Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 27, 2017

Effect of processing conditions on the structure, electrical and mechanical properties of melt mixed high density polyethylene/multi-walled CNT composites in compression molding

Auswirkung der Prozessbedingungen des Formpressens auf die Struktur, elektrischen und mechanischen Eigenschaften von hochverdichteten Polyethylen-CNT-Kompositen
  • Dong Xiang , Jiadong Guo , Amit Kumar , Biqiong Chen and Eileen Harkin-Jones
From the journal Materials Testing

Abstract

Processing conditions can significantly influence the structure and properties of polymer nanocomposites. In the present study, melt mixed high density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared via twin-screw extrusion and then compression molded (CM). The effect of heating temperature, pressing time and cooling rate on the structure, electrical and mechanical properties of the CM nanocomposites was systematically investigated. Volume resistivity tests indicate that the nanocomposite with 2 wt.-% MWCNTs, which is in the region of the electrical percolation threshold, is very sensitive to the CM parameters such that heating temperature > pressing time > cooling rate. Generally, the resistivity of nanocomposites decreases with increasing heating temperature and pressing time. Interestingly, the electrical resistivity of the rapidly cooled nanocomposite with 2 wt.-% MWCNTs is about 2 orders lower than that of the slowly cooled nanocomposite which is attributed to the lower crystallinity and smaller crystallites presenting less of an obstacle to the formation of conductive pathways. The tensile properties of the nanocomposite with 2 wt.-% MWCNTs are also influenced by the compression molding parameters to some extent, while those of the nanocomposites with higher MWCNT loading are insensitive to the changes in processing conditions. The modulus of the nanocomposites increases by about 25 to 50 % and 110 to 130 %, respectively, with the incorporation of 2 and 4 wt.-% MWCNTs, which agrees well with the theoretical values predicted from Halpin-Tsai and Mori-Tanaka models. This work has important implications for both process control and the tailoring of electrical and mechanical properties in the commercial manufacture of conductive HDPE/MWCNT nanocomposites.

Kurzfassung

Die Prozessbedingungen können die Struktur und die Eigenschaften von Polymer-Nanokompositen signifikant beeinflussen. In der diesem Beitrag zugrunde liegenden Studie wurden schmelzgemischte hochverdichtete (Melt Mixed High Density Polyethylene) mit mehrwandigen Carbon-Nanoröhrchen (Multi-Walled Carbon Nanotube (MWCNT)) verstärkte Nanokomposite mittels zweischraubiger Extrusion hergestellt und nachfolgend formgepresst. Die Auswirkung der Temperatur, der Pressdauer und der Abkühlungsrate auf die Struktur sowie die elektrischen und mechanischen Eigenschaften der formgepressten Nanokomposite wurde systematisch untersucht. Die Tests bezüglich des Volumenwiderstandes deuten an, dass das Nanokomposit mit 2 wt.-% MWCNT, das in dem Bereich der Schwelle zur elektrischen Durchlässigkeit liegt, sehr sensibel bezüglich der Formpressparameter ist, und zwar mit einem jeweils größeren Effekt der Temperatur gegenüber der Pressdauer und entsprechend der Abkühlungsrate. Allgemein nahm der Widerstand der Nanokomposite mit zunehmender Formpresstemperatur und -dauer ab. Interessanterweise ist der elektrische Widerstand der abgeschreckten Nanokomposite mit 2 wt.-% MWCNT um zwei Größenordnungen niedriger als der der langsam abgekühlten Nanokomposite, was auf die geringere Kristallinität und kleinere Kristallite zurückgeführt wird, die geringeres Hindernis für die Ausbildung von leitenden Pfaden darstellen. Die Zugeigenschaften der Nanokomposite mit 2 wt.-% MWCNT werden ebenfalls innerhalb bestimmter Grenzen durch die Formpressparameter beeinflusst, während diejenigen der Nanokomposite mit größeren MWCNT-Anteilen nicht sensitiv bezüglich der Prozessbedingungen waren. Der Modul der Nanokomposite nahm zwischen 25 und 50 % und entsprechend zwischen 110 und 130 % mit der Zugabe von 2 bzw. 4 wt.-% MWCNT zu, was gut mit den theoretischen Werten unter Vorhersage nach den Halpin-Tsai- und Mori-Tanaka-Modellen übereinstimmt. Die vorliegende Arbeit hat bedeutende Auswirkungen für die Prozesskontrolle und die resultierenden elektrischen und mechanischen Eigenschaften bei der Herstellung von leitenden HDPE/MWCNT-Nanokompositen.


*Correspondence Address, Dr. Dong Xiang, Lecturer of Materials Science and Engineering, School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China, E-mail:

Dr. Dong Xiang, born in 1987, is currently a lecturer in Southwest Petroleum University, Chengdu, China. In 2009, he received his BEng in Materials Forming and Control Engineering from Xihua Univerisity, Chengdu, China. In 2011, he received his MEng in Materials Processing Engineering from Chongqing University, Chongqing, China. In 2015, he obtained his PhD in Mechanical Engineering from Queen's University Belfast, UK. His research interests mainly include polymer nanocomposites and materials processing.

Jiadong Guo, born in 1993, is currently an undergraduate student majoring in Materials Forming and Control Engineering in Southwest Petroleum University, Chengdu, China. He is conducting research of polymer nanocomposite and processing, which is financially supported by the Sichuan Provincial University Key Laboratory of Oil and Gas Field Materials.

Dr. Amit Kumar is currently a lecturer at the Centre for Nanostructured Media (CNM) in the school of Mathematics and Physics at Queen's University Belfast, UK. He obtained his PhD from Pennsylvania State University, University Park, USA and then undertook postdoctoral research at Oak Ridge National Lab, Oak Ridge, TN, USA. The nanoscale study of functional materials and their functional imaging has formed a concurrent theme of his research ranging from ferroic oxides for data storage applications, piezoelectric materials for MEMS applications to fuel cell electrolytes for energy storage devices.

Dr. Biqiong Chen is currently a senior lecturer in functional polymers in the Department of Materials Science and Engineering, University of Sheffield, UK. She joined the department in 2012 from Trinity College Dublin, Ireland, where she was a lecturer for 4 years. She obtained her PhD in Materials Science from University of London, UK in 2005. Her research interests mainly focus on polymer nanocomposites and bioinspired materials.

Prof. Dr. Eileen Harkin-Jones, born in 1962, is Fellow of the Royal Academy of Engineering andProfessor at University of Ulster, UK. In 1983, she received her BEng in Mechanical Engineering from University College Dublin, Ireland. In 1988, she obtained her PGCE in Maths/Physics and PhD in Mechanical Engineering from Queen's University Belfast, UK. Her main areas of research have been in processing of polymers and materials development, particularly polymer nanocomposites.


References

1 S. K.Yadav, S. S.Mahapatra, J. W.Cho: Tailored dielectric and mechanical properties of noncovalently functionalized carbon nanotube/poly (styrene-b-(ethylene-co-butylene)-b-styrene) nanocomposites, Journal of Applied Polymer Science129 (2013), No. 4, pp. 2305231210.1002/app.38938Search in Google Scholar

2 D.Xiang, E.Harkin-Jones, D.Linton: Processability, structural evolution and properties of melt processed biaxially stretched HDPE/MWCNT nanocomposites, RSC Advances4 (2014), No. 83, pp. 441304414010.1039/C4RA07166BSearch in Google Scholar

3 D.Xiang, E.Harkin-Jones, D.Linton: Characterization and structure-property relationship of melt-mixed high density polyethylene/multi-walled carbon nanotube composites under extensional deformation, RSC Advances5 (2015), No. 59, pp. 475554756810.1039/C5RA06075CSearch in Google Scholar

4 D.Xiang, E.Harkin-Jones, D.Linton, P.Martin: Structure, mechanical, and electrical properties of high-density polyethylene/multi-walled carbon nanotube composites processed by compression molding and blown film extrusion, Journal of Applied Polymer Science132 (2015), No. 42, pp. 426654267610.1002/app.42665Search in Google Scholar

5 G.Kasaliwal, A.Göldel, P.Pötschke: Influence of processing conditions in small-scale melt mixing and compression molding on the resistivity and morphology of polycarbonate-MWNT composites, Journal of Applied Polymer Science112 (2009), No. 6, pp. 3494350910.1002/app.29930Search in Google Scholar

6 J.Shen, M. F.Champagne, R.Gendron, S.Guo: The development of conductive carbon nanotube network in polypropylene-based composites during simultaneous biaxial stretching, European Polymer Journal48 (2012), No. 5, pp. 93093910.1016/j.eurpolymj.2012.03.005Search in Google Scholar

7 G. Y. H.Choong, C. Y.Lew: Role of processing history on the mechanical and electrical behavior of melt-compounded polycarbonate-multiwalled carbon nanotube nanocomposites, Journal of Applied Polymer Science132 (2015), No. 28, pp. 422774228710.1002/app.42277Search in Google Scholar

8 G. L.Hwang, Y. T.Shieh, K. C.Hwang: Efficient load transfer to polymer-grafted multiwalled carbon nanotubes in polymer composites, Advanced Functional Materials14 (2004), No. 5, pp. 48749110.1002/adfm.200305382Search in Google Scholar

9 D.Gomes, M. R.Loos, M. H.Wichmann, A.de la Vega, K.Schulte: Sulfonated polyoxadiazole composites containing carbon nanotubes prepared via in situ polymerization, Composites Science and Technology69 (2009), No. 2, pp. 22022710.1016/j.compscitech.2008.10.008Search in Google Scholar

10 Q.Wang, J.Dai, W.Li, Z.Wei, J.Jiang: The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites, Composites Science and Technology68 (2008), No. 7, pp. 1644164810.1016/j.compscitech.2008.02.024Search in Google Scholar

11 T.McNally, P.Pötschke, P.Halley, M.Murphy, D.Martin, S. E. J.Bell, G. P.Brennan, D.Bein, P.Lemoine, J. P.Quinn: Polyethylene multiwalled carbon nanotube composites, Polymer46 (2005), No. 19, pp. 8222823210.1016/j.polymer.2005.06.094Search in Google Scholar

12 H. B.Zhang, W. G.Zheng, Q.Yan, Y.Yang, J. W.Wang, Z. H.Lu, G. Y.Ji, Z. Z.Yu: Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding, Polymer51 (2010), No. 5, pp. 1191119610.1016/j.polymer.2010.01.027Search in Google Scholar

13 C.McClory, T.McNally, M.Baxendale, P.Pötschke, W.Blau, M.Ruether: Electrical and rheological percolation of PMMA/MWCNT nanocomposites as a function of CNT geometry and functionality, European Polymer Journal46 (2010), No. 5, pp. 85486810.1016/j.eurpolymj.2010.02.009Search in Google Scholar

14 R.Socher, B.Krause, M. T.Müller, R.Boldt, P.Pötschke: The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites, Polymer53 (2012), No. 2, pp. 49550410.1016/j.polymer.2011.12.019Search in Google Scholar

15 B.Mayoral, J.Lopes, T.McNally: Influence of processing parameters during small-scale batch melt mixing on the dispersion of MWCNTs in a poly(propylene) matrix, Macromolecular Materials and Engineering299 (2014), No. 5, pp. 60962110.1002/mame.201300158Search in Google Scholar

16 C.McClory, P.Pötschke, T.McNally: Influence of screw speed on electrical and rheological percolation of melt-mixed high-impact polystyrene/MWCNT nanocomposites, Macromolecular Materials and Engineering296 (2011), No. 1, pp. 596910.1002/mame.201000220Search in Google Scholar

17 B.Mayoral, G.Garrett, T.McNally: Influence of screw profile employed during melt mixing on the micro-scale dispersion of MWCNTs in poly(propylene), Macromolecular Materials and Engineering299 (2014), No. 6, pp. 74875610.1002/mame.201300172Search in Google Scholar

18 M.Morcom, K.Atkinson, G. P.Simon: The effect of carbon nanotube properties on the degree of dispersion and reinforcement of high density polyethylene, Polymer51 (2010), No. 15, pp. 3540355010.1016/j.polymer.2010.04.053Search in Google Scholar

19 P.Verge, S.Benali, L.Bonnaud, A.Minoia, M.Mainil, R.Lazzaroni, P.Dubois: Unpredictable dispersion states of MWNTs in HDPE: A comparative and comprehensive study, European Polymer Journal48 (2012), No. 15, pp. 67768310.1016/j.eurpolymj.2012.01.002Search in Google Scholar

20 J.Yang, K.Wang, H.Deng, F.Chen, Q.Fu: Hierarchical structure of injection-molded bars of HDPE/MWCNTs composites with novel nanohybrid shish-kebab, Polymer51 (2010), No. 3, pp. 77478210.1016/j.polymer.2009.11.059Search in Google Scholar

21 F.Tao, L.Bonnaud, D.Auhl, B.Struth, P.Dubois, C.Bailly: Influence of shear-induced crystallization on the electrical conductivity of high density polyethylene carbon nanotube nanocomposites, Polymer53 (2012), No. 25, pp. 5909591610.1016/j.polymer.2012.10.026Search in Google Scholar

22 O.Valentino, M.Sarno, N. G.Rainone, M. R.Nobile, P.Ciambelli, H. C.Neitzert, G. P.Simon: Influence of the polymer structure and nanotube concentration on the conductivity and rheological properties of polyethylene/CNT composites, Physica E: Low-Dimensional Systems and Nanostructures40 (2008), No. 7, pp. 2440244510.1016/j.physe.2008.02.001Search in Google Scholar

23 B.Xu, J.Leisen, H. W.Beckham, R.Abu-Zurayk, E.Harkin-Jones, T.McNally: Evolution of clay morphology in polypropylene/montmorillonite nanocomposites upon equibiaxial stretching: A solid-state NMR and TEM approach, Macromolecules42 (2009), No. 22, pp. 8959896810.1021/ma901754mSearch in Google Scholar

24 S.Xie, E.Harkin-Jones, Y.Shen, P.Hornsby, M.McAfee, T.McNally, R.Patel, H.Benkreira, P.Coates: Quantitative characterization of clay dispersion in polypropylene-clay nanocomposites by combined transmission electron microscopy and optical microscopy, Materials Letters64 (2010), No. 2, pp. 18518810.1016/j.matlet.2009.10.042Search in Google Scholar

25 R.Abu-Zurayk, E.Harkin-Jones: The influence of processing route on the structuring and properties of high-density polyethylene (HDPE)/clay nanocomposites, Polymer Engineering and Science52 (2012), No. 11, pp. 2360236810.1002/pen.23189Search in Google Scholar

26 R.Abu-Zurayk, E.Harkin-Jones, T.McNally, G.Menary, P.Martin, C.Armstrong, M.McAfee: Structure-property relationships in biaxially deformed polypropylene nanocomposites, Composites Science and Technology70 (2010), No. 9, pp. 1353135910.1016/j.compscitech.2010.04.011Search in Google Scholar

27 T.Villmow, S.Pegel, P.Pötschke, U.Wagenknecht: Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes, Composites Science and Technology68 (2008), No. 3, pp. 77778910.1016/j.compscitech.2007.08.031Search in Google Scholar

28 D.Lellinger, D.Xu, A.Ohneiser, T.Skipa, I.Alig: Influence of the injection moulding conditions on the in-line measured electrical conductivity of polymer-carbon nanotube composites, Physica Status Solidi (B)245 (2008), No. 10, pp. 2268227110.1002/pssb.200879619Search in Google Scholar

29 D. R.Yu, G. H.Kim: Effect of processing parameters on the surface resistivity of ethylene-vinyl acetate copolymer/multiwalled carbon nanotube nanocomposites, Journal of Applied Polymer Science124 (2012), No. 4, pp. 2962296710.1002/app.35322Search in Google Scholar

30 T.Villmow, P.Pötschke, S.Pegel, L.Häussler, B.Kretzschmar: Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix, Polymer49 (2008), No. 16, pp. 3500350910.1016/j.polymer.2008.06.010Search in Google Scholar

31 R. H.Olley, D. C.Bassett: An improved permanganic etchant for polyolefines, Polymer23 (1982), No. 12, pp. 1707171010.1016/0032-3861(82)90110-0Search in Google Scholar

32 W.Luo, N.Zhou, Z.Zhang, H.Wu: Effects of vibration force field on structure and properties of HDPE/CaCO3 nanocomposites, Polymer Testing25 (2006), No. 1, pp. 12412910.1016/j.polymertesting.2005.08.010Search in Google Scholar

33 B.Wunderlich: Macromolecular Physics, Volume 3: Crystal Melting, Academic Press, New York, USA (1980)Search in Google Scholar

34 S.Chakraborty, J.Pionteck, B.Krause, S.Banerjee, B.Voit: Influence of different carbon nanotubes on the electrical and mechanical properties of melt mixed poly(ether sulfone)-multi walled carbon nanotube composites, Composites Science and Technology72 (2012), No. 15, pp. 1933194010.1016/j.compscitech.2012.08.013Search in Google Scholar

35 F.Nanni, B.Mayoral, F.Madau, G.Montesperelli, T.McNally: Effect of MWCNT alignment on mechanical and self-monitoring properties of extruded PET-MWCNT nanocomposites, Composites Science and Technology72 (2012), No. 10, pp. 1140114610.1016/j.compscitech.2012.03.015Search in Google Scholar

36 M.Pöllänen, S.Pirinen, M.Suvanto, T. T.Pakkanen: Influence of carbon nanotube-polymeric compatibilizer masterbatches on morphological, thermal, mechanical, and tribological properties of polyethylene, Composites Science and Technology71 (2011), No. 10, pp. 1353136010.1016/j.compscitech.2011.05.009Search in Google Scholar

37 Y.Xi, A.Yamanaka, Y.Bin, M.Matsuo: Electrical properties of segregated ultrahigh molecular weight polyethylene/multiwalled carbon nanotube composites, Journal of Applied Polymer Science105 (2007), No. 5, pp. 2868287610.1002/app.26282Search in Google Scholar

38 H.Deng, T.Skipa, R.Zhang, D.Lellinger, E.Bilotti, I.Alig, T.Peijs: Effect of melting and crystallization on the conductive network in conductive polymer composites, Polymer50 (2009), No. 15, pp. 3747375410.1016/j.polymer.2009.05.016Search in Google Scholar

39 O.Zhou, R.Fleming, D.Murphy, C.Chen, R.Haddon, A.Ramirez, S.Glarum: Defects in carbon nanostructures, Science263 (1994), No. 5154, pp. 1744174710.1126/science.263.5154.1744Search in Google Scholar PubMed

40 P.Kalakonda, G. S.Iannacchione, M.Daly, G. Y.Georgiev, Y.Cabrera, R.Judith, P.Cebe: Calorimetric study of nanocomposites of multiwalled carbon nanotubes and isotactic polypropylene polymer, Journal of Applied Polymer Science130 (2013), No. 1, pp. 58759410.1002/app.39204Search in Google Scholar

41 R.Haggenmueller, J. E.Fischer, K. I.Winey: Single wall carbon nanotube/polyethylene nanocomposites: Nucleating and templating polyethylene crystallites, Macromolecules39 (2006), No. 8, pp. 2964297110.1021/ma0527698Search in Google Scholar

42 R.Zhang, A.Dowden, H.Deng, M.Baxendale, T.Peijs: Conductive network formation in the melt of carbon nanotube/thermoplastic polyurethane composite, Composites Science and Technology69 (2009), No. 10, pp. 1499150410.1016/j.compscitech.2008.11.039Search in Google Scholar

43 J.Du, L.Zhao, Y.Zeng, L.Zhang, F.Li, P.Liu, C.Liu: Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure, Carbon49 (2011), No. 4, pp. 1094110010.1016/j.carbon.2010.11.013Search in Google Scholar

44 C.Li, E. T.Thostenson, T. W.Chou: Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites, Applied Physics Letters91 (2007), No. 22, pp. 22311422311710.1063/1.2819690Search in Google Scholar

45 M.El Achaby, A.Qaiss: Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes, Materials and Design44 (2013), pp. 818910.1016/j.matdes.2012.07.065Search in Google Scholar

46 Z.Jiang, P.Hornsby, R.McCool, A.Murphy: Mechanical and thermal properties of polyphenylene sulfide/multiwalled carbon nanotube composites, Journal of Applied Polymer Science123 (2011), No. 5, pp. 2676268310.1002/app.34669Search in Google Scholar

47 G. P.Tandon, G. J.Weng: The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites, Polymer Composites5 (1984), No. 4, pp. 32733310.1002/pc.750050413Search in Google Scholar

48 T.Fornes, D.Paul: Modeling properties of nylon 6/clay nanocomposites using composite theories, Polymer44 (2003), No. 17, pp. 4993501310.1016/S0032-3861(03)00471-3Search in Google Scholar

Published Online: 2017-01-27
Published in Print: 2017-02-03

© 2017, Carl Hanser Verlag, München

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.3139/120.110974/pdf
Scroll to top button