Abstract
Among the nontraditional machining process, electrical discharge machining (EDM) is one of the significant processes for machining complicated and complex shapes. An experimental investigation was made with the help of electrical discharge machine on Inconel 718 using brass electrode tool to study the vibration behavior in the titanium carbide nanoparticles mixed dielectric fluid environment. Titanium carbide nanoparticles mixed with dielectric fluid possess a high strength, have good electrical and thermal properties and require lesser machining time than pure dielectric fluid. In this experiment, the central composite second order rotatable design and response surface methodology were used to develop an experimental model. Based on the developed models, analyses on machining characteristics of titanium carbide nanoparticles mixed EDM have been carried out. The current, pulse on time and pulse off time were considered as input process parameters and the output process parameters such as material removal rate and surface roughness were evaluated. Analysis of variance has been conducted to check the ability of the developed regression models. The investigations revealed that best surface finish could be obtained by setting the EDM machine parameters at low current and short pulse on time.
Kurzfassung
Unter den nichttraditionellen Bearbeitungsverfahren ist das Funkenerodieren (Electrical Discharge Machining (EDM)) einer der wesentlichsten Prozesse, um komplizierte und komplexe Formen zu bearbeiten. Es wurde mithilfe einer Funkenerosionsmaschine Inconel 718 mit einer Messingelektrode bearbeitet, um das Vibrationsverhalten in der Umgebung des mit Nanopartikeln aus Titancarbiden (TiC) gemischten Dielektrikums zu untersuchen. Die mit dem Dielektrikum gemischten TiC-Nanopartikel besitzen eine hohe Festigkeit, haben ausschließlich gute elektrische und thermische Eigenschaften und benötigen eine geringere Bearbeitungszeit als reine Dielektrika. In dem Experiment wurde ein zentrales Verbunddesign der zweiten Ordnung verwendet und die Oberflächenantwortprozedur angewandt, um das experimentelle Modell zu entwickeln. Basierend auf den entwickelten Modellen wurden die Analysen der Bearbeitungseigenschaften des Funkenerodierens mit Titancarbid-Nanoteilchen ausgeführt. Die Stromstärke, die Impuls-Anschaltzeit und die Impuls-Abschaltzeit wurden dabei als Eingabeparameter berücksichtigt, und die Materialabtragsrate sowie die Oberflächenrauheit evaluiert. Es wurde eine Varianzanalyse durchgeführt, um die Einsatzvermögen der entwickelten Regressionsmodelle zu prüfen. Die Untersuchung ergab, dass das beste Oberflächenqualität erreicht werden kann, indem die Stromstärke niedrig und die Impulsdauer kurz gewählt werden.
References
1 R.Chakravorty, S. K.Gauri, S.Chakraborty: Optimization of correlated responses of EDM process, Materials and Manufacturing Processes27 (2011), No. 3, pp. 337–34710.1080/10426914.2011.577875Search in Google Scholar
2 P.Suresh, R.Venatesan, T.Sekar, N.Elango, V.Sathiyamoorthy: Optimization of intervening variables in micro EDM of SS 316L using a genetic algorithm and response-surface methodology, Journal of Mechanical Engineering60 (2014), No. 10, pp. 656–66410.5545/sv-jme.2014.1665Search in Google Scholar
3 D. G.Thakur, B.Ramamurthy, L.Vijayaraghavan: Some investigations on high speed dry machining of aerospace material Inconel 718 using multicoated carbide inserts, Materials and Manufacturing Processes27 (2011), No. 10, pp. 1066–107210.1080/10426914.2011.654158Search in Google Scholar
4 E. O.Ezugwu, J.Bonney, D. A.Fadare, W. F.Sales: Machining of nickel-base Inconel 718, alloy with ceramic tools under finishing conditions with various coolant supply pressures, Journal of Materials Processing Technology162–163 (2005), pp. 609–61410.1016/j.jmatprotec.2005.02.144Search in Google Scholar
5 A.Erden, S.Bilgin: Role of impurities in electric discharge machining, Proceedings of the 21st International Machine Tool Design and Research Conference London, Macmillan, UK (1980), pp. 345–350Search in Google Scholar
6 A.Kumar, S.Maheshwari, C.Sharma, N.Beri: Analysis of machining characteristics in additive mixed electric discharge machining of nickel-based super alloy Inconel 718, Materials and Manufacturing Processes26 (2011), No. 8, pp. 1011–101810.1080/10426914.2010.527415Search in Google Scholar
7 M. L.Jeswani: Effect of the addition of graphite powder to kerosene used as the dielectric fluid in electrical discharge machining, Wear70 (1981), No. 2, pp. 133–13910.1016/0043-1648(81)90148-4Search in Google Scholar
8 H. K.Kansal, S.Singh, P.Kumar: Application of Taguchi method for optimization of powder mixed electrical discharge machining, International Journal of Manufacturing Technology and Management7 (2005), No. 2, pp. 329–34110.1504/IJMTM.2005.006836Search in Google Scholar
9 A.Kumar, S.Maheshwari, C.Sharma, N.Beri: A study of multi-objective parametric optimization of silicon abrasive mixed electrical discharge machining of tool steel, Materials and Manufacturing Processes25 (2010), No. 10, pp. 1041–104710.1080/10426910903447303Search in Google Scholar
10 M. D.AshikurRahmanKhana, M. M.Rahman, K.Kadirgamab: Neural network modeling and analysis for surface characteristics in electrical discharge machining, Procedia Engineering90 (2014), pp. 631–63610.1016/j.proeng.2014.11.783Search in Google Scholar
11 W. G.Cockran, G. M.Cox: Experimental Designs, 2nd Edition, Asia Publishing House, New Delhi, India (1977)Search in Google Scholar
12 S. BenSalem, W.Tebni, E.Bayraktar: Prediction of surface roughness by experimental design methodology in electrical discharge machining (EDM), Journal of Achievements in Materials and Manufacturing Engineering49 (2011), No. 2, pp. 150–157Search in Google Scholar
13 C.Senthilkumar, G.Ganesan: Electrical discharge surface coating of EN38 steel with WC/Ni composite electrode, Journal of Advanced Microscopy Research10 (2015), No. 3, pp. 202–20710.1166/jamr.2015.1263Search in Google Scholar
14 G. S.Prihandana, M.Mahardika, M.Hamdi, K.Mitsui: Effect of low-frequency vibration on workpiece in EDM processes, Journal of Mechanical Science and Technology25 (2011), No. 5, pp. 1231–123410.1007/s12206-011-0307-1Search in Google Scholar
15 A. M.Gadalla, B.Bozkurt: Expanding heat source model for thermal spalling of TiB2 in electrical discharge machining, Journal of Materials Research7 (1992), No. 10, pp. 2853–285810.1557/JMR.1992.2853Search in Google Scholar
16 B.Singh, J.Kumar, S.Kumar: Experimental investigation on surface characteristics in powder-mixed electro discharge machining of AA6061/10%SiC composite, Materials and Manufacturing Processes29 (2014), No. 3, pp. 287–29710.1080/10426914.2014.880463Search in Google Scholar
17 B.Bhattacharyya, S.Gangopadhyay, B. R.Sarkar: Modelling and analysis of EDMED job surface integrity, Journal of Materials Processing Technology189 (2007), No. 1–3, pp. 169–17710.1080/10426914.2014.880463Search in Google Scholar
18 A. S.Gill, S.Kumar: Surface roughness evaluation for EDM of En31 with Cu-Cr-Ni powder metallurgy tool, Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering8 (2014), No. 7, pp. 1308–13131999.8/9999010Search in Google Scholar
© 2017, Carl Hanser Verlag, München