Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 24, 2017

Effect of machining characteristics of nano-TiC mixed dielectric fluids on Inconel 718 in the EDM process

Bearbeitungseigenschaften von gemischten Nano-TiC-Dielektrika auf Inconel 718 beim Funkenerodieren
  • Rajendran Boopathi , Sengottuvelu Sundaram , Chinnamuthu Senthilkumar and Muthusamy Prabu
From the journal Materials Testing


Among the nontraditional machining process, electrical discharge machining (EDM) is one of the significant processes for machining complicated and complex shapes. An experimental investigation was made with the help of electrical discharge machine on Inconel 718 using brass electrode tool to study the vibration behavior in the titanium carbide nanoparticles mixed dielectric fluid environment. Titanium carbide nanoparticles mixed with dielectric fluid possess a high strength, have good electrical and thermal properties and require lesser machining time than pure dielectric fluid. In this experiment, the central composite second order rotatable design and response surface methodology were used to develop an experimental model. Based on the developed models, analyses on machining characteristics of titanium carbide nanoparticles mixed EDM have been carried out. The current, pulse on time and pulse off time were considered as input process parameters and the output process parameters such as material removal rate and surface roughness were evaluated. Analysis of variance has been conducted to check the ability of the developed regression models. The investigations revealed that best surface finish could be obtained by setting the EDM machine parameters at low current and short pulse on time.


Unter den nichttraditionellen Bearbeitungsverfahren ist das Funkenerodieren (Electrical Discharge Machining (EDM)) einer der wesentlichsten Prozesse, um komplizierte und komplexe Formen zu bearbeiten. Es wurde mithilfe einer Funkenerosionsmaschine Inconel 718 mit einer Messingelektrode bearbeitet, um das Vibrationsverhalten in der Umgebung des mit Nanopartikeln aus Titancarbiden (TiC) gemischten Dielektrikums zu untersuchen. Die mit dem Dielektrikum gemischten TiC-Nanopartikel besitzen eine hohe Festigkeit, haben ausschließlich gute elektrische und thermische Eigenschaften und benötigen eine geringere Bearbeitungszeit als reine Dielektrika. In dem Experiment wurde ein zentrales Verbunddesign der zweiten Ordnung verwendet und die Oberflächenantwortprozedur angewandt, um das experimentelle Modell zu entwickeln. Basierend auf den entwickelten Modellen wurden die Analysen der Bearbeitungseigenschaften des Funkenerodierens mit Titancarbid-Nanoteilchen ausgeführt. Die Stromstärke, die Impuls-Anschaltzeit und die Impuls-Abschaltzeit wurden dabei als Eingabeparameter berücksichtigt, und die Materialabtragsrate sowie die Oberflächenrauheit evaluiert. Es wurde eine Varianzanalyse durchgeführt, um die Einsatzvermögen der entwickelten Regressionsmodelle zu prüfen. Die Untersuchung ergab, dass das beste Oberflächenqualität erreicht werden kann, indem die Stromstärke niedrig und die Impulsdauer kurz gewählt werden.

*Correspondence Address, Prof. Dr. Rajendran Boopathi, Department of Mechanical Engineering, Sathyabama University, Chennai 600119, India, E-mail:

Is Prof. Rajendran Boopathi, born in 1978, Research Scholar, Sathyabama University, Chennai, Tamil Nadu, India., He completed his Master degree in Manufacturing Engineering at Annamalai University, Annamalai Nagar, Tamil Nadu, India in 2006. He obtained his Bachelor degree in Mechanical Engineering at University of Madras, Tamil Nadu, India in 2000.

Dr. Sengottuvelu Sundaram, born in 1960, holds a PhD in Mechanical Engineering from Sathyabama University, Chennai, Tamil Nadu, India since 2010. He graduated with an MTech in Maintenance Engineering and Management at IIT Madras, Tamil Nadu, India in 1998, and with a Bachelor degree of Mechanical Engineering from GCE Salem, Tamil Nadu, India in 1990. He is currently working as Dean in the Department of Mechanical Engineering at Muthayammal Engineering College in Rasipuram, Tamil Nadu, India.

Dr. Chinnamuthu Senthilkumar, born in 1971, holds a PhD in Manufacturing Engineering from Annamalai University, Annamalai Nagar, India, since 2011. He graduated with a Master degree and a Bachelor degree in Mechanical and Production Engineering from the same university in 2002 and 1993, respectively. He is currently working as Assistant Professor in the Department of Manufacturing Engineering at Annamalai University in Annamalai Nagar, Tamil Nadu, India.

Dr. Muthusamy Prabu, born in 1981, holds a PhD in Mechanical Engineering from Anna University, Tamil Nadu, India since 2016. He graduated with a Master degree in Manufacturing Engineering from Annamalai University, Annamalai Nagar, Tamil Nadu, India in 2006, and with a Bachelor degree in Mechanical Engineering from Bharathiar University, Tamil Nadu, India in 2004. He is currently working as Associate Professor in the Department of Mechanical Engineering at K. S. R. College of Engineering, Tiruchengode, Tamil Nadu, India.


1 R.Chakravorty, S. K.Gauri, S.Chakraborty: Optimization of correlated responses of EDM process, Materials and Manufacturing Processes27 (2011), No. 3, pp. 33734710.1080/10426914.2011.577875Search in Google Scholar

2 P.Suresh, R.Venatesan, T.Sekar, N.Elango, V.Sathiyamoorthy: Optimization of intervening variables in micro EDM of SS 316L using a genetic algorithm and response-surface methodology, Journal of Mechanical Engineering60 (2014), No. 10, pp. 65666410.5545/sv-jme.2014.1665Search in Google Scholar

3 D. G.Thakur, B.Ramamurthy, L.Vijayaraghavan: Some investigations on high speed dry machining of aerospace material Inconel 718 using multicoated carbide inserts, Materials and Manufacturing Processes27 (2011), No. 10, pp. 1066107210.1080/10426914.2011.654158Search in Google Scholar

4 E. O.Ezugwu, J.Bonney, D. A.Fadare, W. F.Sales: Machining of nickel-base Inconel 718, alloy with ceramic tools under finishing conditions with various coolant supply pressures, Journal of Materials Processing Technology162–163 (2005), pp. 60961410.1016/j.jmatprotec.2005.02.144Search in Google Scholar

5 A.Erden, S.Bilgin: Role of impurities in electric discharge machining, Proceedings of the 21st International Machine Tool Design and Research Conference London, Macmillan, UK (1980), pp. 345350Search in Google Scholar

6 A.Kumar, S.Maheshwari, C.Sharma, N.Beri: Analysis of machining characteristics in additive mixed electric discharge machining of nickel-based super alloy Inconel 718, Materials and Manufacturing Processes26 (2011), No. 8, pp. 1011101810.1080/10426914.2010.527415Search in Google Scholar

7 M. L.Jeswani: Effect of the addition of graphite powder to kerosene used as the dielectric fluid in electrical discharge machining, Wear70 (1981), No. 2, pp. 13313910.1016/0043-1648(81)90148-4Search in Google Scholar

8 H. K.Kansal, S.Singh, P.Kumar: Application of Taguchi method for optimization of powder mixed electrical discharge machining, International Journal of Manufacturing Technology and Management7 (2005), No. 2, pp. 32934110.1504/IJMTM.2005.006836Search in Google Scholar

9 A.Kumar, S.Maheshwari, C.Sharma, N.Beri: A study of multi-objective parametric optimization of silicon abrasive mixed electrical discharge machining of tool steel, Materials and Manufacturing Processes25 (2010), No. 10, pp. 1041104710.1080/10426910903447303Search in Google Scholar

10 M. D.AshikurRahmanKhana, M. M.Rahman, K.Kadirgamab: Neural network modeling and analysis for surface characteristics in electrical discharge machining, Procedia Engineering90 (2014), pp. 63163610.1016/j.proeng.2014.11.783Search in Google Scholar

11 W. G.Cockran, G. M.Cox: Experimental Designs, 2nd Edition, Asia Publishing House, New Delhi, India (1977)Search in Google Scholar

12 S. BenSalem, W.Tebni, E.Bayraktar: Prediction of surface roughness by experimental design methodology in electrical discharge machining (EDM), Journal of Achievements in Materials and Manufacturing Engineering49 (2011), No. 2, pp. 150157Search in Google Scholar

13 C.Senthilkumar, G.Ganesan: Electrical discharge surface coating of EN38 steel with WC/Ni composite electrode, Journal of Advanced Microscopy Research10 (2015), No. 3, pp. 20220710.1166/jamr.2015.1263Search in Google Scholar

14 G. S.Prihandana, M.Mahardika, M.Hamdi, K.Mitsui: Effect of low-frequency vibration on workpiece in EDM processes, Journal of Mechanical Science and Technology25 (2011), No. 5, pp. 1231123410.1007/s12206-011-0307-1Search in Google Scholar

15 A. M.Gadalla, B.Bozkurt: Expanding heat source model for thermal spalling of TiB2 in electrical discharge machining, Journal of Materials Research7 (1992), No. 10, pp. 2853285810.1557/JMR.1992.2853Search in Google Scholar

16 B.Singh, J.Kumar, S.Kumar: Experimental investigation on surface characteristics in powder-mixed electro discharge machining of AA6061/10%SiC composite, Materials and Manufacturing Processes29 (2014), No. 3, pp. 28729710.1080/10426914.2014.880463Search in Google Scholar

17 B.Bhattacharyya, S.Gangopadhyay, B. R.Sarkar: Modelling and analysis of EDMED job surface integrity, Journal of Materials Processing Technology189 (2007), No. 1–3, pp. 16917710.1080/10426914.2014.880463Search in Google Scholar

18 A. S.Gill, S.Kumar: Surface roughness evaluation for EDM of En31 with Cu-Cr-Ni powder metallurgy tool, Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering8 (2014), No. 7, pp. 130813131999.8/9999010Search in Google Scholar

Published Online: 2017-03-24
Published in Print: 2017-04-04

© 2017, Carl Hanser Verlag, München

Downloaded on 29.3.2023 from
Scroll Up Arrow