Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 19, 2017

Mechanical property effects of symmetrical hour glass shapes formed during double-sided TIG keyhole arc welding of AISI1040 joints

Einfluss von symmetrischen Uhrglasformen während des beidseitigen WIG-Schweißens auf die mechanischen Eigenschaften von AISI1040-Verbindungen
Tanju Teker, Eyyüp Murat Karakurt and Fatih Demir
From the journal Materials Testing

Abstract

In this study, AISI1040 steel sheets of 10 mm thickness were welded in butt position without pretreatment by double-sided TIG keyhole arc welding process. Weld joints were produced by using three different welding currents (410, 430 and 450 A), electrode diameter (Φ: 3.2 mm), a constant shielding gas flow rate (8 l × min−1) and welding speed (0.01 m × min−1). Microstructural changes occurred in the fusion line of the weld samples were examined by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and microhardness analysis. V-notch Charpy and tensile tests were carried out to determine the bond strength of the weld samples. In addition, fracture types of the tensile test samples were determined by the help of fractographic examinations using SEM and EDS. Consequently, the weld samples produced by double-sided TIG keyhole technique are approximately symmetrical and hour glass shaped. Also, it was found that penetration depth increased with current density.

Kurzfassung

In der diesem Beitrag zugrunde liegenden Studie wurden 10 mm dicke Bleche aus AISI1040-Stahl in Wannenlage ohne Vorwärmung mit dem beidseitigen WIG-Verfahren verschweißt. Die Schweißverbindungen wurden mit drei verschiedenen Stromstärken (410, 430 und 450 A), einem Elektrodendurchmesser von 3,2 mm, einem konstanten Schutzgasstrom von 8 l × min−1 und einer Schweißgeschwindigkeit von 0.01 m × min−1 hergestellt. Die an den Schmelzlinien der geschweißten Proben auftretenden Mikrostrukturen wurden mittels Lichtmikroskopie, Rasterlelektronenmikroskopie (REM), Energiedispersiver Spektroskopie (EDS) und Mikrohärtemessungen untersucht. V-Notch Charpy-Tests und Zugversuche wurden ausgeführt, um die Festigkeit der Verbindungen zu prüfen. Zusätzlich wurden die Brucharten der Zugproben mittels fraktografischer Untersuchungen unter Verwendung von REM und EDS bestimmt. Schließlich stellte sich heraus, dass die Schweißproben, die mittels des beidseitigen WIG-Schweißens hergestellt wurden, annähernd symmetrisch sind und eine Uhrglasform aufweisen. Es wurde außerdem herausgefunden, dass die Einschweißtiefe mit der Stromstärke zunimmt.


*Correspondence Address, Associate Prof. Dr. Tanju Teker, Department of Metallurgy and Materials Engineering, Faculty of Engineering, University of Adıyaman, 02040 Adıyaman, Turkey, E-mail:

Associate Prof. Dr. Tanju Teker, born in 1971, is Associate Professor in the Metallurgy and Materials Engineering Department, Engineering Faculty, Adiyaman University, Adiyaman, Turkey. He graduated in Metallurgy Education from Gazi University, Ankara, Turkey, in 1997. He received MSc and PhD from Firat University, Elaziğ, Turkey in 2004 and 2010, respectively. He studied metal coating techniques, fusion welding method, solid state welding method welding and materials. His main interests are manufacturing techniques, surface modification and welding.

Eyyüp Murat Karakurt, born in 1988, graduated from Gebze High Technolgy University, Faculty of Engineering, Materials Science Engineeering Department, Gebze, Turkey in 2011. He is studying in the Metallurgy and Materials Engineering Department, Engineering Faculty, Adiyaman University, Adiyaman, Turkey. His research interests are boring and welding.

Fatih Demir, born in 1987, received his BSc from the Metallurgy and Materials Engineeering Department, Faculty of Engineering, University of Firat, Elaziğ, Turkey, in 2010. He received his MSc from the same university in 2014. Currently, he is working on his PhD at Batman University, Batman, Turkey. His research interests are boring, coating and materials.


References

1 L. S.Grünenwald, T.Seefeld, F.Vollertsen, M.Kocak: Solutions for joining pipe steels using laser-GMA-hybrid welding processes, Physics Procedia5 (2010), pp. 778710.1016/j.phpro.2010.08.032Search in Google Scholar

2 S.Lathabai, B. L.Jarvis, K. J.Barton: Comparison of keyhole and conventional gas tungsten arc welds in commercially pure titanium, Materials Science and Engineering A209 (2000), pp. 819310.1016/S0921-5093(00)01408-8Search in Google Scholar

3 T.Teker: The effect of austenitic interlayer in keyhole plasma transfer arc welding of AISI 430 ferritic stainless steel couples, International Journal of Advanced and Manufacturing Technology69 (2013), pp. 1833184010.1007/s00170-013-5158-8Search in Google Scholar

4 T.Teker, T.Kurşun: Weldability of AA6063 alloys by using keyhole gas tungsten arc welding technique, Kovove Materialy – Metallic Materials52 (2014), pp. 23724210.4149/km20144237Search in Google Scholar

5 C.Rosellini, L.Jarvis: The keyhole TIG welding process: a valid alternative for valuable metal joints, Welding International5 (2009), pp. 61662110.1080/0950110802543237Search in Google Scholar

6 Y.Feng, Z.Luo, Z.Liu, Y.Li, Y.Luo, Y.Huang: Keyhole gas tungsten arc welding of AISI 316L stainless steel, Materials Design85 (2015), pp. 243110.1016/j.matdes.2015.0.011Search in Google Scholar

7 J.Martikainen: Conditions for achieving high-quality welds in the plasma-arc keyhole welding of structural steels, Journal of Materials Processing Technology52 (1995), pp. 687510.1016/0924-0136(94)01444-6Search in Google Scholar

8 X.Jin, L.Li: An experimental study on the keyhole shapes in laser deep penetration welding, Optics and Lasers in Engineering41 (2003), pp. 77979010.1016/S0143-8166(03)00034-4Search in Google Scholar

9 A.Ureña, E.Otero, M. V.Utrilla, C. J.Múnez: Weldability of a 2205 duplex stainless steel using plasma arc welding, Journal of Materials Processing Technology182 (2007), pp. 62463110.1016/j.jmatprotec.2006.08.030Search in Google Scholar

10 P. J.Modenesi, E. R.Apolinario, I. M.Pereira: TIG welding with single-component fluxes, Journal of Materials Processing Technology99 (2000), pp. 26026510.1016/S0924-0136(99)00435-5Search in Google Scholar

11 Y. M.Zhang, C. X.Pan, A. T.Male: Improvement of microstructures and properties of 6061 aluminum alloy weldments using double-sided arc welding process, Metallurgical and Materials Transactions A31 (2000), pp. 2537254310.1007/s11661-000-0198-8Search in Google Scholar

12 Y. M.Zhang, C. X.Pan, A. T.Male: Welding of austenitic stainless steel using double sided arc welding process, Materials Science and Technology17 (2001), pp. 1280128410.1179/026708301101509205Search in Google Scholar

13 ASTM Standard E8M-04: Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, Pennsylvania, USA (2004)Search in Google Scholar

14 T.Teker, N.Özdemir: Weldability and joining characteristic of AISI430/AISI1040 steel using keyhole plasma arc welding, International Journal of Advanced and Manufacturing Technology63 (2012), pp. 11712810.1007/s00170-011-3890-5Search in Google Scholar

15 T.Teker: Effect of synergic controlled pulsed and manual gas metal arc welding process on mechanical and metallurgical properties of AISI430 ferritic stainless steel, Archives of Metallurgy and Materials58 (2013), pp. 1029103510.2478/amm-2013-0122Search in Google Scholar

Published Online: 2017-06-19
Published in Print: 2017-06-01

© 2017, Carl Hanser Verlag, München