Abstract
The present work reports the fabrication of A357 alloy matrix nanocomposites reinforced with 0.5, 1.0 and 2.0 wt.-% TiB2nanoparticles (20–30 nm) by a novel method which is the combination of semi-solid mechanical mixing and ultrasonic dispersion of nanoparticles in liquid state. The microstructural and mechanical properties of the fabricated nanocomposites were investigated. The microstructural studies conducted with optical and advanced electron microscopes indicated that reasonably effective deagglomeration and uniform distribution of TiB2 nanoparticles into the matrix were achieved. Transmission electron microscopy studies also confirmed that the nanoparticles were embedded into the matrix and a good bonding was obtained between the matrix and the reinforcement. Increasing nanoparticle content led to grain refinement and significant enhancement in the mechanical properties of nanocomposites. The addition of 0.5, 1.0, and 2.0 wt.-% TiB2 nanoparticles increased the 0.2 % proof stress of matrix alloy by approximately 31, 48 and 61 %, respectively. The contribution of different mechanisms to the strength enhancement is discussed. It is proposed that the strengthening is mainly due to Orowan mechanism and dislocation generation effect by the coefficient of thermal expansion mismatch between the TiB2 nanoparticles and the matrix.
Kurzfassung
Der vorliegende Beitrag beschreibt die Herstellung eines Nanokomposits aus der Aluminiumlegierung A357, das mit 0,5, 1,0 und 2,0 Gew.-% TiB2-Nanopartikeln (20–30 nm) verstärkt wurde. Mittels eines neuen Verfahrens, das eine Kombination aus halbfestem mechanischen Mischen und der Ultraschalldispersion der Nanopartikel im flüssigen Zustand darstellt, wurde dieses erzeugt. Anschließend wurden die mikrostrukturellen und mechanischen Eigenschaften der hergestellten Nanokomposite untersucht. Die mikrostrukturellen Untersuchungen mittels optischer und Elektronenmikroskopie deuten darauf hin, dass ein effektives Desagglomerieren und eine gleichmäßige Verteilung der TiB2-Nanopartikel in der Matrix erreicht werden kann. Untersuchungen mittels Transmissionselektronenmikroskopie bestätigten zudem, dass die Nanopartikel in der Matrix eingebettet waren und eine gute Bindung zwischen Matrix und Verstärkung erreicht wurde. Ein zunehmender Gehalt an Nanopartikeln führte zur Kornfeinung und einer signifikanten Verbesserung der mechanischen Eigenschaften der Nanokomposite. Die Zugabe von 0,5, 1,0 und 2,0 Gew.-% TiB2-Nanopartikel erhöhte die 0,2 % Dehngrenze der Matrixlegierung entsprechend um ca. 31, 48 bzw. 61 %. Es wird außerdem der Beitrag verschiedener Mechanismen zur Verbesserung der Festigkeit diskutiert. Hierbei wird angenommen, dass die Verfestigung hauptsächlich auf den Orowan-Mechanismus zurückzuführen ist, sowie auf den Effekt der Versetzungsgenerierung infolge der ungleichen Wärmeausdehnungskoeffizienten zwischen den TiB2-Nanokompositen und der Matrix.
References
1 Y.Yan, X.Li: Ultrasonic cavitation-based nanomanufacturing of bulk aluminum matrix nanocomposites, Journal of Manufacturing Science and Engineering129 (2007), No. 2, pp. 252–25510.1115/1.2194064Search in Google Scholar
2 A.Mazahery, H.Abdizadeh, H. R.Baharvandi: Development of high- performance A356 nano-Al2O3 composites, Materials Science and Engineering A518 (2009), No. 1–2, pp. 61–6410.1016/j.msea.2009.04.014Search in Google Scholar
3 H.Ahamed, V.Senthilkumar: Role of nano-sized reinforcement and milling on the synthesis of nano-crystalline aluminum alloy composites by mechanical alloying, Journal of Alloys and Compounds505 (2010), No. 2, pp. 772–78210.1016/j.jallcom.2010.06.139Search in Google Scholar
4 D.Weiss, M.Black: Using semisolid extrusion for production of aluminum-nanocomposite master alloys, Solid State Phenomena217–218 (2015), pp. 426–43010.4028/www.scientific.net/SSP.217-218.426Search in Google Scholar
5 K. K.Nanda, A.Maisels, F. E.Kruis, H.Fissan, S.Stappert: Higher surface energy of free nanoparticles, Physical Review Letters91 (2003), No. 10, pp. 1061021–106102410.1103/PhysRevLett.91.106102Search in Google Scholar PubMed
6 J. B.Ferguson, F.Sheykh-Jaberi, C. S.Kim, P. K.Rohatgi, K.Cho: On the strength and strain to failure in particle-reinforced magnesium metal-matrix nanocomposites (Mg MMNCs), Materials Science and Engineering A558 (2012), pp. 193–20410.1016/j.msea.2012.07.111Search in Google Scholar
7 S. C.Tjong: Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties, Advanced Engineering Materials9 (2007), No. 8, pp. 639–65210.1002/adem.200700106Search in Google Scholar
8 M. K.Akbari, H. R.Baharvandi, O.Mirzaee: Nano-sized aluminum oxide reinforced commercial casting A356 alloy matrix: Evaluation of hardness, wear resistance and compressive strength focusing on particle distribution in aluminum matrix, Composites Part B: Engineering52 (2013), pp. 262–26810.1016/j.compositesb.2013.04.038Search in Google Scholar
9 M. D.Cicco, H.Konishi, G.Cao, H. S.Choi, L.Turng, J. H.Perepezko, S.Kou, R.Lakes, X.Li: Strong, ductile magnesium-zinc nanocomposites, Metallurgical and Materials Transactions A40 (2009), pp. 3038–304510.1007/s11661-009-0013-0Search in Google Scholar
10 Y.Yang, J.Lan, X.Li: Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy, Materials Science and Engineering A380 (2004), pp. 378–38310.1016/j.msea.2004.03.073Search in Google Scholar
11 L.Chen, J.Peng, J.Xu, H.Choi, X.Li: Achieving uniform distribution and dispersion of a high percentage of nanoparticles in metal matrix nanocomposites by solidification processing, Scripta Materialia69 (2013), No. 8, pp. 634–63710.1016/j.scriptamat.2013.07.016Search in Google Scholar
12 J.Lan, Y.Yang, X.Li: Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method, Materials Science and Engineering A386 (2004), No. 1–2, pp. 284–29010.1016/j.msea.2004.07.024Search in Google Scholar
13 X.Li, Y.Yang, D.Weiss: Theoretical and experimental study on ultrasonic dispersion of nanoparticles for strengthening cast aluminum alloy A356, Metallurgical Science and Technology26–2 (2008), No. 2, pp. 12–20Search in Google Scholar
14 G.Cao, H.Konishi, X.Li: Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing, Materials Science and Engineering A486 (2008), No. 1–2, pp. 357–36210.1016/j.msea.2007.09.054Search in Google Scholar
15 X.Li, Y.Yang, X.Cheng: Ultrasonic-assisted fabrication of metal matrix nanocomposites, Journal of Materials Science39 (2004), No. 9, pp. 3211–321210.1023/B:JMSC.0000025862.23609.6fSearch in Google Scholar
16 S.Kandemir, D. P.Weston, H. V.Atkinson: Production of A356/TiB2 nanocomposite feedstock for thixoforming by an ultrasonic method, Solid State Phenomena192–193 (2013), pp. 66–7110.4028/www.scientific.net/SSP.192-193.66Search in Google Scholar
17 S.Kandemir, H. V.Atkinson, D. P.Weston, S. V.Hainsworth: Thixoforming of A356/SiC and A356/TiB2 nanocomposites fabricated by a combination of green compact nanoparticle incorporation and ultrasonic treatment of the melted compact, Metallurgical and Materials Transactions A45 (2014), No. 12, pp. 5782–579810.1007/s11661-014-2501-0Search in Google Scholar
18 S. A.Vorozhtsov, D. G.Eskin, J.Tamayo, A. B.Vorozhtsov, V. V.Promakhov, A. A.Averin, A. P.Khrustalyov: The application of external fields to the manufacturing of novel dense composite master alloys and aluminum-based nanocomposites, Metallurgical and Materials Transactions A46 (2015), No. 7, pp. 2870–287510.1007/s11661-015-2850-3Search in Google Scholar
19 K. B.Nie, X. J.Wang, K.Wu, L.Xu, M. Y.Zheng, X. S.Hu: Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration, Journal of Alloys and Compounds509 (2011), No. 35, pp. 8664–866910.1016/j.jallcom.2011.06.091Search in Google Scholar
20 J.Jiang, Y.Wang: Microstructure and mechanical properties of the semisolid slurries and rheoformed component of nano-sized SiC/7075 aluminum matrix composite prepared by ultrasonic-assisted semisolid stirring, Materials Science and Engineering A639 (2015), pp. 350–35810.1016/j.msea.2015.04.064Search in Google Scholar
21 D. A.Weirauch, W. J.Krafick, G.Ackart, P. D.Ownby: The wettability of titanium diboride by molten aluminum drops, Journal of Materials Science40 (2005), No. 9, pp. 2301–230610.1007/s10853-005-1949-0Search in Google Scholar
22 ASTM Standard E8M: Standard test methods for tension testing of metallic materials, ASTM International, West Conshohocken, PA, USA (2008)Search in Google Scholar
23 Z.Zhang, D. L.Chen: Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength, Scripta Materialia54 (2006), No. 7, pp. 1321–132610.1016/j.scriptamat.2005.12.017Search in Google Scholar
24 C. S.Goh, J.Wei, L. C.Lee: Properties and deformation behaviour of Mg-Y2O3 nanocomposites, Acta Materialia55 (2007), No. 15, pp. 5115–512110.1016/j.actamat.2007.05.032Search in Google Scholar
25 E. O.Hall: The deformation and ageing of mild steel III: Discussion of results, Proceedings of the Physical Society, Section B64 (1951), pp. 747–75310.1088/0370-1301/64/9/303Search in Google Scholar
26 N. J.Petch: The cleavage strength of polycrystals, Journal of the Iron and Steel Institute174 (1953), pp. 25–28Search in Google Scholar
27 G.Neite, K.Kubota, K.Higashi, F.Hehmann: Magnesium-based Alloys, R. W.Cahn, P.Haasen, E. J.Kramer (Eds.): Materials Science and Technology 8, Wiley-VCH, Germany (2005), pp. 115–212Search in Google Scholar
28 D. J.Lloyd: Particle reinforced aluminum and magnesium matrix composites, International Materials Reviews39 (1994), No. 1, pp. 1–2310.1179/imr.1994.39.1.1Search in Google Scholar
29 R.Armstrong, I.Codd, R. M.Douthwaite, N. J.Petch: The plastic deformation of polycrystalline aggregates, Philosophical Magazine7 (1962), No. 73, pp. 45–5810.1080/14786436208201857Search in Google Scholar
30 L.Thilly, M.Véron, O.Ludwig, F.Lecouturier: Deformation mechanism in high strength Cu/Nb nanocomposites, Materials Science and Engineering A309–310 (2001), pp. 510–51310.1016/S0921-5093(00)01661-0Search in Google Scholar
31 Z.Zhang, D. L.Chen: Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites, Materials Science and Engineering A483–484 (2008), pp. 148–15210.1016/j.msea.2006.10.184Search in Google Scholar
32 S.Vorozhtsov, I.Zhukov, V.Promakhov, E.Naydenkin, A.Khrustalyov, A.Vorozhtsov: The influence of ScF3 nanoparticles on the physical and mechanical properties of new metal matrix composite based on A356 aluminum alloy, The Journal of the Minerals, Metals & Materials Society68 (2016), No. 12, pp. 3101–310610.1007/s11837-016-2141-5Search in Google Scholar
33 J. R.Davis: Aluminum and Aluminum Alloys, Metals Park, Ohio, USA (1994)Search in Google Scholar
34 M.Wang, D.Chen, Z.Chen, Y.Wu, F.Wang, N.Ma: Mechanical properties of in-situ TiB2/A356 composites, Materials Science and Engineering A590 (2014), pp. 246–25410.1016/j.msea.2013.10.021Search in Google Scholar
35 A.Erman, J.Groza, X.Li, H.Choi, G.Cao: Nanoparticle effects in cast Mg-1 wt.-% SiC nano-composites, Materials Science and Engineering A558 (2012), pp. 39–4310.1016/j.msea.2012.07.048Search in Google Scholar
36 J.Nampoothiri, R. S.Harini, S. K.Nayak, B.Raj, K. R.Ravi: Post in-situ reaction ultrasonic treatment for generation of Al-4.4Cu/TiB2 nanocomposite: A route to enhance the strength of metal matrix nanocomposites, Journal of Alloys and Compounds683 (2016), pp. 370–37810.1016/j.jallcom.2016.05.067Search in Google Scholar
© 2017, Carl Hanser Verlag, München