Abstract
The surface of AISI 1045 steel was coated using the flame spray technique. Iron-based superalloy (Fe16Mo2C0.25Mn) powders were used as matrix material and a mixture of mechanically alloyed 10 wt.-% Fe16Mo2C0.25Mn and 90 wt.-% Al2O3–3TiO2 powders was used as reinforcing material. The mechanical alloying process was performed by milling with an attritor for 60 hours. The coating material comprised of a mixture of the matrix (Fe16Mo2C0.25Mn) powder and mechanically alloyed reinforcing powders at varying rates of 5, 10 and 15 %, respectively. The microstructure, microhardness, adhesive wear behaviors and the coefficients of friction of the coated specimens were examined. It was observed that defects increased and cracks formed on the interface, depending on the increase in the reinforcing ratio. It was determined that the coefficient of friction and wear loss increased by the increasing load in all specimens. The minimum wear loss was observed for the specimen with 10 % reinforcement and the maximum wear loss was observed for the specimen with 15 % reinforcement. The highest average coefficient of friction by the applied load was obtained for the coating with 10 % reinforcement and the lowest average coefficient of friction was obtained for the specimen with 5 % reinforcement.
Kurzfassung
Für den vorliegenden Beitrag wurde die Oberfläche eines Stahles AISI 1045 mittels Flammspritzens beschichtet. Hierzu wurden Pulver der eisenbasierten Superlegierung Fe16Mo2C0.25Mn als Matrixmaterial und eine Mischung von mechanisch legierten Pulvern aus 10 wt.-% Fe16Mo2C0.25Mn und 90 wt.-% Al2O3-3TiO2 als Verstärkungsmaterial verwendet. Der mechanische Legierungsprozess wurde mittels Mahlen über 60 h in einer Pulvermühle durchgeführt. Das Beschichtungsmaterial umfasste eine Mischung aus dem Matrixpulver (Fe16Mo2C0.25Mn) und mechanisch legierten Verstärkungspulvern mit einem Verhältnis von 5, 10 und 15 %. Die Mikrostruktur, das Adhäsionsverschleißverhalten und der Reibkoeffizient der beschichteten Proben wurde untersucht. Hierbei wurde festgestellt, dass die Defekte zunahmen und sich Risse auf der Grenzfläche ausbildeten, und zwar abhängig von der Zunahme des Verstärkungsverhältnisses. Es wurde ermittelt, dass der Reibkoeffizient und der Verschleißabtrag mit zunehmender Last bei allen Proben anstiegen. Der minimale Verschleißabtrag wurde in der 10 % verstärkten Probe festgestellt. Der maximale Verschleißabtrag wurde in der 15 % verstärkten Probe ermittelt. Der höchste durchschnittliche Reibkoeffizient ergab sich für die 10 % verstärkte und der entsprechend niedrigste für die 5 % verstärkte Probe.
References
1 J.Voyer: Wear-resistant amorphous iron-based flame-sprayed coatings, Journal of Thermal Spray Technology19 (2010), No. 5, pp. 1013–102310.1007/s11666-010-9495-ySearch in Google Scholar
2 C. J.Li, A.Ohmori, Y.Harada: Effect of powder structure on the structure of thermally sprayed WC-Co coatings, Journal of Materials Science31 (1996), No. 3, pp. 785–79410.1007/BF00367900Search in Google Scholar
3 I.Ceylan: Investigation of Inner Surface of Pipes Coated with Powder Spray Process, MSc Thesis, Sakarya University, Sakarya, Turkey (2006)Search in Google Scholar
4 C.Suryanarayana: Mechanical Alloying and Milling, Marcel Dekker, New York, USA (2004)10.1201/9780203020647Search in Google Scholar
5 M. J.Donachie: Superalloys – Source Book, American Society for Metals, Materials Park, Ohio, USA (1984)Search in Google Scholar
6 N.Eigen, F.Gärtner, T.Klassen, E.Aust, R.Bormann, H.Kreye: Microstructures and properties of nanostructured thermal sprayed coatings using high-energy milled cermet powders, Surface and Coatings Technology195 (2005), No. 2, pp. 344–35710.1016/j.surfcoat.2004.06.016Search in Google Scholar
7 M.Cherigui, N. E.Fenineche, C.Coddet: Structural study of iron-based microstructured and nanostructured powders sprayed by HVOF thermal spraying, Surface and Coatings Technology192 (2005), No. 1, pp. 19–2610.1016/j.surfcoat.2004.02.023Search in Google Scholar
8 J.Rauch, G.Bolelli, A.Killinger, R.Gadow, V.Cannillo, L.Lusvarghi: Advances in high velocity suspension flame spraying (HVSFS), Surface and Coatings Technology203 (2009), No. 15, pp. 2131–213810.1016/j.surfcoat.2008.12.002Search in Google Scholar
9 G.Bolelli, B.Bonferroni, V.Cannillo, R.Gadow, A.Killinger, L.Lusvargh, J.Rauch, N.Stiegler: Wear behaviour of high velocity suspension flame sprayed (HVSFS) Al2O3 coatings produced using micron- and nano-sized powder suspensions, Surface and Coatings Technology204 (2010), No. 16, pp. 2657–266810.1016/j.surfcoat.2010.02.018Search in Google Scholar
10 T.Lampke, B.Wielage, H.Pokhmurska, C.Rupprecht, S.Schuberth, R.Drehmann, F.Schreiber: Development of particle-reinforced nanostructured iron-based composite alloys for thermal spraying, Surface and Coatings Technology205 (2011), No. 12, pp. 3671–367610.1016/j.surfcoat.2011.01.003Search in Google Scholar
11 M. A.Zhuang, W.Wei, Z.Ji-Feng, D.Shi-Zhi, Z.Lian-Yong, L.Zhi-Chao: Preparation and properties of flame-sprayed Mo-FeB-Fe cermet coatings, Transactions of Nonferrous Metals Society of China21 (2011), pp. 1314–132110.1016/S1003-6326(11)60859-5Search in Google Scholar
12 W.Li, C.Li: Characterization of cold-sprayed nanostructured Fe-based alloy, Applied Surface Science256 (2010), pp. 2193–219810.1016/j.apsusc.2009.09.072Search in Google Scholar
13 B. D.Cullity: Elements of X-Ray Diffraction Reading, Addison-Wesley, MA, USA (1974)Search in Google Scholar
14 Y.Wang, S.Jiang, M.Wang, S.Wang, T. D.Xiao, P. R.Strutt: Abrasive wear characteristics of plasma sprayed nanostructured alumina/titania coatings, Wear237 (2000), pp. 176–18510.1016/S0043-1648(99)00323-3Search in Google Scholar
15 X. Y.Qin, X. J.Wu, L. D.Zhan: The microhardness of nanocrystalline silver, Nanostructural Materials5 (1995), pp. 101–11010.1016/0965-9773(95)00003-WSearch in Google Scholar
16 M. C.Yang, F.Ye, X. C.Sun, X. K.Sun, W. D.Wei: Study on microhardness of bulk nanocrystalline copper, Nanostructured Materials9 (1997), No. 1, pp. 481–48410.1016/S0965-9773(97)00105-0Search in Google Scholar
17 G. E.Fougere, J. R.Weertman, R. W.Siegel: Processing and mechanical behavior of nanocrystalline Fe, Nanostructured Materials5 (1995), No. 2, pp. 127–13410.1016/0965-9773(95)00021-6Search in Google Scholar
18 C.Cheung, F.Djuanda, U.Erb, G.Palumbo: Electrodeposition of nanocrystalline Ni-Fe alloys, Nanostructured Materials5 (1995), No. 5, pp. 513–52310.1016/0965-9773(95)00264-FSearch in Google Scholar
19 N. Y.Sari, M.Yilmaz: Investigation of abrasive and erosive wear behaviour of surface hardening methods applied to AISI 1050 steel, Materials and Design27 (2006), No. 6, pp. 470–47810.1016/j.matdes.2004.11.020Search in Google Scholar
20 S. P.Sharm, D. K.Dwivedi, P. K.Jain: Effect of La2O3 addition on the microstructure, hardness and abrasive wear behavior of flame sprayed Ni based coatings, Wear267 (2009), pp. 853–85910.1016/j.wear.2008.12.029Search in Google Scholar
21 S. O.Yilmaz, M.Özenbas, M.Yaz: FeCrC, FeW, and NiAl modified iron-based alloy coating deposited by plasma transferred arc process, Materials and Manufacturing Processes26 (2011), No. 5, pp. 722–73110.1080/10426914.2010.480997Search in Google Scholar
22 Y. C.Lin, H. M.Chen, Y. C.Chen: Microstructures and wear properties of various clad layers of the Fe–W–C–B–Cr system, Surface and Coatings Technology236 (2013), pp. 410–41910.1016/j.surfcoat.2013.10.027Search in Google Scholar
© 2017, Carl Hanser Verlag, München