Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 21, 2017

Influence of surface microstructure and chemical compositions on grooving corrosion of carbon steel welded joints

Einfluss der Oberflächenmikrostruktur und der chemischen Zusammensetzung auf die Grabenkorrosion von Schweißverbindungen aus Kohlenstoffstahl
Yongxin Lu, Xiao Li, Lianyong Xu, Hongyang Jing and Yongdian Han
From the journal Materials Testing

Abstract

Corrosion behavior of a welded joint is complicated and can be strongly dependent on its local chemical composition and microstructure of the surface. To gain a thorough insight into the grooving corrosion behavior of welded joint, it is necessary to understand the corrosion mechanism of different regions of the welded joint. In this study, the influence of the lattice constant on the electron work function (EWF) and corrosion rate of base metal and two weld metals was investigated using a constant potential polarization approach and a scanning Kelvin probe (SKP). Experimental results showed that surface EWF decreased with increasing lattice constant, whereas the corrosion rate increased with an increase in lattice constant. At the same time, it was theoretically demonstrated that the lattice constant can affect the local EWF fluctuation of a welded joint. The fluctuation further leads to the corrosion rate difference of the different regions of the welded joint. So, the lattice constant change in the surface structure is a possible reason for the average grooving susceptibility coefficient difference of two kinds of welded joint. Besides, the alloying elements distribution of two kinds of welded joint zones should be a main reason for the average grooving susceptibility coefficient difference of joints verified by the EPMA measurements and the quantitative calculatinon of the contents of Cu, Ni and Si in the joints.

Kurzfassung

Das Korrosionsverhalten einer Schweißverbindung ist kompliziert und kann sehr stark von ihrer lokalen chemischen Zusammensetzung und Mikrostruktur abhängen. Um einen umfassenden Einblick in das Grabenkorrosionsverhalten einer Schweißverbindung zu erhalten, ist es notwendig den Korrosionsmechanismus der Schweißverbindungen in den verschiedenen Zonen zu verstehen. In der diesem Beitrag zugrunde liegenden Studie wurde der Einfluss der Gitterkonstante auf die Funktion der Elektronenaustrittsarbeit (Electron Work Function (EWF)) und die Korrosionsrate des Grundwerkstoffes und zweier Zusatzwerkstoffe untersucht, und zwar unter Verwendung eines Ansatzes mit konstantem Potential und der Raster-Kelvinprobe (Scanning Kelvin Probe (SKP). Die experimentellen Ergebnisse zeigen, dass die Oberflächen-EWF mit der Gitterkonstante abnimmt, während die Korrosionsrate mit zunehmender Gitterkonstante ansteigt. Gleichzeitig wird theoretisch gezeigt, dass die Gitterkonstante die lokale EWF-Fluktuation der Schweißverbindung beeinflussen kann. Die Fluktuation führt im Weiteren zur Differenz der Korrosionsraten der verschiedenen Schweißnahtzonen. Demnach ist die Oberflächenstruktur ein möglicher Grund für den Unterschied im durchschnittlichen Koeffizient der Anfälligkeit für Grabenkorrosion der beiden Arten der Schweißverbindung. Daneben ist auch die Verteilung der Legierungselemente der beiden Arten der Schweißverbindung ein Hauptgrund für die Differenz der durchschnittlichen Koeffizienten der Abfälligkeit für Grabenkorrosion, wie es die EMPA-Messungen und die quantitative Berechnung der Cu, Ni und Si-Gehalte in den Schweißverbindungen bestätigt.


*Correspondence Address, Dr. Yongxin Lu, School of Materials Science and Engineering Xi'an Shiyou University, Xi'an 710065, P. R. China, E-mail:
** Prof. Dr. Lianyong Xu, School of Materials Science and Engineering Peiyang Park Campus, Tianjin University, 31-169, No.135 Yaguan Road, Tianjin, 300350, P. R. China, E-mail:

Yongxin Lu, born in 1986, graduated with a master degree from the School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou, China, in 2010. He continued studying at the School of Material Science and Engineering, Tianjin University, Tianjin, China, and received his PhD in 2017. Now, he is working at the School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an, China. His main research areas are corrosion and protection of metal material welding joint and environmental corrosion evaluation of welding joints.

Associate Prof. Xiao Li, born in 1969, graduated with MSc from the School of Material Science and Engineering, Xi'an Shiyou University in 1999. Currently, she is Associate Professor in the same faculty. Her main research areas are welding residual stress, deformation control and finite element analysis of welded joints.

Prof. Dr. Hongyang Jing, born in 1966, graduated with an MSc from the School of Mechanical Engineering, Tianjin University, Tianjin, China, in 1988. He continued studying at the same faculty and became a Doctor of Science in 1993. He is Professor and researcher at the School of Mechanical Engineering. His main research areas are construction and materials interconnect technology, life prediction and extension of welding structures. He also studies the creep of welding structures, fracture and fatigue behavior assessments under high or low temperature, corrosion and other complex environments.

Dr. Yongdian Han, born in 1983, graduated with an MSc from the School of Material Science and Engineering, Tianjin University, Tianjin, China, in 2007. He continued studying at the same faculty and received his PhD in 2010. He is a researcher at the School of Material Science and Engineering, Tianjin University. His main research areas are technology and reliability of electronic packaging materials, corrosion of welding structures as well as fatigue and fracture behavior assessments.

Prof. Dr. Lianyong Xu, born in 1975, graduated with an MSc from the School of Material Science and Engineering, Tianjin University, Tianjin, China, in 2004. He continued studying at the same faculty and received his PhD in 2007. Currently, he is Professor in the same faculty. His main research areas are welding mechanics, welding residual stress, deformation control and finite element analysis of welding joints, integrity and life assessment of welded structures under high temperature as well as environmental corrosion evaluation of welded joints.


References

1 M.Shirinzadeh-Dastgiri, J.Mohammadi, Y.Behnamian, A.Eghlimi, A.Mostafaei: Metallurgical investigations and corrosion behavior of failed weld joint in AISI 1518 low carbon steel pipeline, Engineering Failure Analysis53 (2015), pp. 789610.1016/j.engfailanal.2015.03.015Search in Google Scholar

2 L.Huang, B.Brown, S.Nesic: Investigation of environmental effects on intrinsic and galvanic corrosion of mild steel weldment in CO2 environment, Prof. of Corrosion 2014, NACE International, Houston, Texas, USA (2014), Paper No. NACE-2014-4374Search in Google Scholar

3 M.Alizadeh, S.Bordbar: The influence of microstructure on the protective properties of the corrosion product layer generated on the welded API X70 steel in chloride solution, Corrosion Science70 (2013), pp. 17017910.1016/j.corsci.2013.01.026Search in Google Scholar

4 Y.Lu, H.Jing, Y.Han, L.Xu: Effect of welding heat input on the corrosion resistance of carbon steel weld metal, Journal of Materials Engineering and Performance25 (2016), No. 2, pp. 11210.1007/s11665-015-1815-4Search in Google Scholar

5 Y.Lu, H.Jing, Y.Han, L.Xu: Numerical modeling of weld joint corrosion, Journal of Materials Engineering and Performance25 (2016), pp. 96096510.1007/s11665-016-1910-1Search in Google Scholar

6 J. R.Davis: Corrosion of Weldments, ASM International, Materials Park, Ohio, USA (2006)10.31399/asm.tb.cw.9781627083393Search in Google Scholar

7 R.Barker, X.Hu, A.Neville, S.Cushnaghan: Assessment of preferential weld corrosion of carbon steel pipework in CO2-saturated flow-induced corrosion environments, Corrosion69 (2013), pp. 1132114310.5006/0791Search in Google Scholar

8 K.Alawadhi, M.Robinson: Preferential weld corrosion of X65 pipeline steel in flowing brines containing carbon dioxide, Corrosion Engineering, Science and Technology46 (2011), pp. 31832910.1179/147842210X12695149033891Search in Google Scholar

9 Y.-X.Lu, H.-Y.Jing, Y.-D.Han, L.-Y.Xu: Effects of charging conditions on the hydrogen related mechanical property degradation of a 3Cr low alloyed steel, Materials Testing59 (2017), pp. 23323810.3139/120.110989Search in Google Scholar

10 Y.Han, H.Jing, L.Xu: Welding heat input effect on the hydrogen permeation in the X80 steel welded joints, Materials Chemistry and Physics132 (2012), pp. 21622210.1016/j.matchemphys.2011.11.036Search in Google Scholar

11 S.Bordbar, M.Alizadeh, S. H.Hashemi: Effects of microstructure alteration on corrosion behavior of welded joint in API X70 pipeline steel, Materials & Design45 (2013), pp. 59760410.1016/j.matdes.2012.09.051Search in Google Scholar

12 Y.-X.Lu, H.-Y.Jing, Y.-D.Han, L.-Y.Xu: Corrosion behavior of pipeline steel welds in simulated produced water with different CO2 partial pressures under high temperature, Materials Testing59 (2017), pp. 34835410.3139/120.111013Search in Google Scholar

13 A. M.Rahman, S.Kumar, A. R.Gerson: Galvanic corrosion of laser weldments of AA6061 aluminium alloy, Corrosion Science49 (2007), pp. 4339435110.1016/j.corsci.2007.04.010Search in Google Scholar

14 M.Kermani, D.Harr: The impact of corrosion on oil and gas industry, Giornata di studio IGF S. Donato Milanese, Society of Petroleum Engineers (1996), SPE-29784-PA 10.2118/29784-PASearch in Google Scholar

15 R.Barker, X.Hu, A.Neville: The influence of high shear and sand impingement on preferential weld corrosion of carbon steel pipework in CO2-saturated environments, Tribology International68 (2013), pp. 172510.1016/j.triboint.2012.11.015Search in Google Scholar

16 S.Turgoose, J. W.Palmer: Preferential weld corrosion of 1 % Ni welds: Effects of solution conductivity and corrosion inhibitors, Proc. of Corrosion 2005, NACE International, Houston, Texas, USA (2005), Paper No. 05275Search in Google Scholar

17 S. P.Mahajanam, M. W.Joosten: Guidelines for filler-material selection to minimize preferential weld corrosion in pipeline steels, SPE Projects (2011), SPE-130513-PA 10.2118/130513-PASearch in Google Scholar

18 I. G.Winning, D.Mcnaughtan, N.Bretherton: Evaluation of weld corrosion behavior and the application of corrosion inhibitors and combined scale/corrosion inhibitors, Proc. of Corrosion 2004, NACE International, Houston, Texas, USA (2004), Paper No. 04538Search in Google Scholar

19 D.Queen, C.-M.Lee, J.Palmer, E.Gulbrandsen: Guidelines for the prevention, control and monitoring of preferential weld corrosion of ferritic steels in wet hydrocarbon production systems containing CO2, SPE International Symposium on Oilfield Corrosion, Society of Petroleum Engineers (2004), SPE-87552-MS 10.2118/87552-MSSearch in Google Scholar

20 A.Cosham, P.Hopkins, K.Macdonald: Best practice for the assessment of defects in pipelines – Corrosion, Engineering Failure Analysis14 (2007), pp. 1245126510.1016/j.engfailanal.2006.11.035Search in Google Scholar

21 R.Heidersbach: Metallurgy and Corrosion Control in Oil and Gas Production, John Wiley & Sons, New York, USA (2010)10.1002/9780470925782Search in Google Scholar

22 Z.Bi, R.Wang, X.Jing: Grooving corrosion of oil coiled tubes manufactured by electrical resistance welding, Corrosion Science57 (2012), pp. 677310.1016/j.corsci.2011.12.033Search in Google Scholar

23 R.Wang: Effects of microstructure and heat-treatment on grooving corrosion of electric resistance welded pipes, Acta Metallurgica Sinica – Chinese Edition38 (2002), pp. 1281128610.3321/j.issn:0412-1961.2002.12.011Search in Google Scholar

24 R.Wang, S.Luo: Grooving corrosion of electric-resistance-welded oil well casing of J55 steel, Corrosion Science68 (2013), pp. 11912710.1016/j.corsci.2012.11.002Search in Google Scholar

25 M.Xue, J.Xie, W.Li, F.Wang, J.Ou, C.Yang, C.Li, Z.Zhong, Z.Jiang: Changes in surface morphology and work function caused by corrosion in aluminum alloys, Journal of Physics and Chemistry of Solids73 (2012), pp. 78178710.1016/j.jpcs.2012.01.025Search in Google Scholar

26 R.Chattopadhyay: Surface Wear, Analysis, Treatment and Prevention, ASM International, Materials Park, Ohio, USA (2001)Search in Google Scholar

27 W.Ashcroft, N.Mermin: Solid State Physics, Holt, Rinehart and Winston, Cornell University, New York, USA (1976)Search in Google Scholar

28 M.Rohwerder, F.Turcu: High-resolution Kelvin probe microscopy in corrosion science: Scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP), Electrochimica Acta53 (2007), pp. 29029910.1016/j.electacta.2007.03.016Search in Google Scholar

29 P.Pao, C.Feng, S.Gill: Corrosion fatigue crack initiation in aluminum alloys 7075 and 7050, Corrosion56 (2000), pp. 1022103110.5006/1.3294379Search in Google Scholar

30 M.Shao, Y.Fu, R.Hu, C.Lin: A study on pitting corrosion of aluminum alloy 2024-T3 by scanning microreference electrode technique, Materials Science and Engineering A344 (2003), pp. 32332710.1016/S0921-5093(02)00445-8Search in Google Scholar

31 M.Jönsson, D.Thierry, N.LeBozec: The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe, Corrosion Science48 (2006), pp. 1193120810.1016/j.corsci.2005.05.008Search in Google Scholar

32 J.Li, Z.Zheng, S.Li, W.Chen, W.Ren, X.Zhao: Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys, Corrosion Science49 (2007), pp. 2436244910.1016/j.corsci.2006.12.002Search in Google Scholar

33 G.-L.Song, D.Haddad: The topography of magnetron sputter-deposited Mg–Ti alloy thin films, Materials Chemistry and Physics125 (2011), pp. 54855210.1016/j.matchemphys.2010.10.018Search in Google Scholar

34 W.Li, D.Li: On the correlation between surface roughness and work function in copper, The Journal of Chemical Physics122 (2005), pp. 66470810.1063/1.1849135Search in Google Scholar

35 Y.Li, D.Li: Electron work function, adhesion, and friction between 3d transition metals under light loads, Wear259 (2005), pp. 1432143610.1016/j.wear.2005.01.027Search in Google Scholar

36 Y.Li, D.Li: Experimental studies on relationships between the electron work function, adhesion, and friction for 3d transition metals, Journal of Applied Physics95 (2004), pp. 7961796510.1063/1.1738531Search in Google Scholar

37 E.Juzeliūnas, K.Leinartas, W.Fürbeth, K.Jüttner: Study of initial stages of Al–Mg alloy corrosion in water, chloride and Cu(II) environment by a scanning Kelvin probe, Corrosion Science45 (2003), pp. 1939195010.1016/S0010-938X(03)00026-XSearch in Google Scholar

38 A.Fu, Y.Cheng: Characterization of corrosion of X65 pipeline steel under disbonded coating by scanning Kelvin probe, Corrosion Science51 (2009), pp. 91492010.1016/j.corsci.2009.01.022Search in Google Scholar

39 J.Moreto, C.Marino, W. BoseFilho, L.Rocha, J.Fernandes: SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al–Li alloys used in aircraft fabrication, Corrosion Science84 (2014), pp. 304110.1016/j.corsci.2014.03.001Search in Google Scholar

40 M.Doherty, J.Sykes: Micro-cells beneath organic lacquers: a study using scanning Kelvin probe and scanning acoustic microscopy, Corrosion Science46 (2004), pp. 1265128910.1016/j.corsci.2003.09.016Search in Google Scholar

41 J.Sykes, M.Doherty: Interpretation of scanning Kelvin probe potential maps for coated steel using semi-quantitative current density maps, Corrosion Science50 (2008), pp. 2773277810.1016/j.corsci.2008.07.023Search in Google Scholar

42 R.Ozawa, K.Kaykham, A.Hiraishi, Y.Suzuki, N.Mori, T.Yaguchi, J.Itoh, S.Yamamoto: Field emission from flat metal surfaces covered with Ba atoms, Applied Surface Science146 (1999), pp. 16216810.1016/S0169-4332(99)00032-XSearch in Google Scholar

43 W.Li, D.Li: Influence of surface morphology on corrosion and electronic behavior, Acta Materialia54 (2006), pp. 388395, 445–452 10.1016/j.actamat.2005.09.017Search in Google Scholar

44 W.Li, D.Li: Variations of work function and corrosion behaviors of deformed copper surfaces, Applied Surface Science240 (2005), pp. 38839510.1016/j.apsusc.2004.07.017Search in Google Scholar

45 M. D.Fayer: Elements of Quantum Mechanics, Oxford University Press, London, UK (2001)Search in Google Scholar

46 N.Zettili: Quantum Mechanics: Concepts and Applications, John Wiley & Sons, New York, USA (2009)Search in Google Scholar

47 Y. S.Choi, J. J.Shim, J. G.Kim: Effects of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water, Journal of Alloys and Compounds391 (2005), No. 1–2, pp. 16216910.1016/j.jallcom.2004.07.081Search in Google Scholar

48 R. E.Melchers: Effect of small compositional changes on marine immersion corrosion of low alloy steels, Corrosion Science46 (2004), No. 7, pp. 1669169110.1016/j.corsci.2003.10.004Search in Google Scholar

49 V. S.Voruganti, H. B.Luft, D.DeGeer, S. A.Bradford: Scanning reference electrode technique for the investigation of preferential corrosion of weldments in offshore applications, Corrosion47 (1991), pp. 34335110.5006/1.3585264Search in Google Scholar

Published Online: 2017-11-21
Published in Print: 2017-11-15

© 2017, Carl Hanser Verlag, München