Abstract
In this paper, friction and wear properties of nano-carbon reinforced Cu/Ti3SiC2/C nanocomposites are evaluated by orthogonal experiment method. The primary and secondary order of factors affecting wear characteristics of the nanocomposites and the best working conditions of specimens are obtained by means of range analysis and variance analysis. Results demonstrate that change of graphene nanoplatelets (GNPs) content has a very small effect on friction and wear properties of the nanocomposites under the premise of total content of GNPs and multi-walled carbon nanotubes (MWCNTs) is 1 wt.-%. Under these experimental conditions, the optimal level is that content is GNPs 0.8 wt.-% and MWCNTs 0.2 wt.-%, load is 350 N and rotational speed is 50 r × min−1. Microscopic analysis shows that the additions of graphene nanoplatelets and multi-walled carbon nanotubes help to improve wear resistance of the nanocomposites. Main wear mechanisms of the nanocomposites are abrasive wear, delamination wear and oxidation wear.
Kurzfassung
In der diesem Beitrag zugrunde liegenden Studie wurden die Reibungs- und Verschleißeigenschaften von nano-carbonverstärkten Cu/Ti3SiC2/C Nanokompositen mittels dem othogonalen experimentellen Verfahrens evaluiert. Die erste und zweite Ordnung der Faktoren, die die Verscheißeigenschaften der Nanokomposite beeinflussen, und die besten Bearbeitungsbedingungen der Proben wurden unter Einsatz der Bereichsanalyse und der Varianzanalyse ermittelt. Die Ergebnisse zeigen, dass die Veränderung des Gehaltes an Graphen-Nanoplättchen (Graphene Nanoplatelets (GNPs)) einen sehr kleinen Effekt auf die Reibungs- und Verschleißeigenschaften der Nanokomposite hat, unter der Prämisse, dass der Gesamtgehalt der GNPs und der mehrwandigen Carbon-Nanoröhrchen (Multi-Walled Carbon Nanotubes (MWCNTs)) unter 1 wt.-% beträgt. Unter diesen experimentellen Bedingungen ist der optimale Gehalt 0.8 wt.-% GNPs und 0.2 wt.-% MWCNT, wenn die Last 350 N und die Rotationsgeschwindigkeit 50 r × min−1 betragen. Die mikroskopische Analyse zeigte, dass die Zugabe von Graphen-Nanoplättchen und mehrwandigen Carbon-Nanoröhrchen dazu beitragen, den Verschleißwiderstand der Nanokomposite zu erhöhen, wobei die Hauptverschleißmechanismen abrasiver Verschleiß, Delaminationsverschleiß und Oxidationsverschleiß sind.
References
1 G. C.Yao, Q. S.Mei, J. Y.Li, C. L.Li, Y.Ma, F.Chen, M.Liu: Cu/C composites with a good combination of hardness and electrical conductivity fabricated from Cu and graphite by accumulative roll-bonding, Materials & Design110 (2006), pp. 124–3210.1016/j.matdes.2016.07.129Search in Google Scholar
2 J.Kováčik, Š.Emmer, J.Bielek: Thermal conductivity of Cu-graphite composites, International Journal of Thermal Sciences90 (2015), pp. 298–3210.1016/j.ijthermalsci.2014.12.017Search in Google Scholar
3 S. F.Moustafa, S. A.El-Badry, A. M.Sanad, B.Kieback: Friction and wear of copper-graphite composites made with Cu-coated and uncoated graphite powders, Wear253 (2002), No. 7–8, pp. 699–3210.1016/S0043-1648(02)00038-8Search in Google Scholar
4 H. J.Zhao, L.Liu, Y. T.Wu, W. B.Hu: Investigation on wear and corrosion behavior of Cu-graphite composites prepared by electroforming, Composites Science & Technology67 (2007), No. 6, pp. 1210–3210.1016/j.compscitech.2006.05.013Search in Google Scholar
5 K.Rajkumar, S.Aravindan, M. S.Kulkarni: Wear and life characteristics of microwave-sintered copper-graphite composite, Journal of Materials Engineering & Performance21 (2012), No. 11, pp. 2389–3210.1007/s11665-012-0161-zSearch in Google Scholar
6 K.Rajkumar, S.Aravindan: Tribological performance of microwave-heat-treated copper-graphite composites, Tribology Letters37 (2010), No. 2, pp. 131–3210.1007/s11249-009-9499-2Search in Google Scholar
7 M.Shabani, M. H.Paydar, R.Zamiri, M.Goodarzi, M. M.Moshksar: Microstructural and sliding wear behavior of SiC-particle reinforced copper matrix composites fabricated by sintering and sinter-forging processes, Journal of Materials Research and Technology5 (2016), No. 1, pp. 5–3210.1016/j.jmrt.2015.03.002Search in Google Scholar
8 J.Kováčik, Š.Emmer, J.Bielek, L.Keleši: Effect of composition on friction coefficient of Cu-graphite composites, Wear265 (2008), No. 3–4, pp. 417–3210.1016/j.wear.2007.11.012Search in Google Scholar
9 Z. Y.Zhou, B.Chen, X.Wang, C.Yan: Mechanical properties of Ti3 SiC2 particulate reinforced copper prepared by hot pressing of copper coated Ti3 SiC2 and copper powder, Materials Science & Technology20 (2004), No. 4, pp. 661–3210.1179/026708304225016581Search in Google Scholar
10 B.Xue, Z. S.Xu, Q. X.Zhang, X. L.Shi, M.Wang, W. Z.Zhai, J.Yao, S. Y.Song: Tribological properties of TiAl-Ti3 SiC2 composites, Journal of Wuhan University of Technology29 (2014), No. 2, pp. 256–3210.1007/s11595-014-0904-9Search in Google Scholar
11 W. X.Liu, X. S.Jiang, Z. Y.Shao, D. F.Mo, D. G.Zhu, M.Zhang: Tribological behaviors of Cu/Ti3 SiC2/C/MWCNTs composites with electric current, Journal of Computational & Theoretical Nanoscience12 (2015), No. 9, pp. 2664–3210.1166/jctn.2015.4160Search in Google Scholar
12 S. R.Bakshi, D.Lahir, A.Agarwal: Carbon nanotube reinforced metal matrix composites – A review, International Materials Reviews55 (2010), No. 1, pp. 41–3210.1179/095066009X12572530170543Search in Google Scholar
13 X.Gao, H. Y.Yue, E. J.Guo, H.Zhang, X. Y.Lin, L. H.Yao, B.Wang: Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites, Powder Technology301 (2016), pp. 601–3210.1016/j.powtec.2016.06.045Search in Google Scholar
14 N.Akçamlı, H.Gökçe, D.Uzunsoy: Processing and characterization of graphene nano-platelet (GNP) reinforced aluminum matrix composites, Materials Testing58 (2016), No. 11–12, pp. 946–3210.3139/120.110944Search in Google Scholar
15 Ö.Güler: Mechanical and thermal properties of a Cu-CNT composite with carbon nanotubes synthesized by CVD process, Materials Testing56 (2014), No. 9, pp. 662–3210.3139/120.110615Search in Google Scholar
16 J. P.Tu, Y. Z.Yang, L. Y.Wang, X. C.Ma, X. B.Zhang: Tribological properties of carbon-nanotube-reinforced copper composites, Tribology Letters10 (2001), No. 4, pp. 225–3210.1023/A:1016662114589Search in Google Scholar
17 C. B.Lin, Z. C.Chang, Y. H.Tung, Y. Y.Ko: Manufacturing and tribological properties of copper matrix/carbon nanotubes composites, Wear270 (2011), No. 5–6, pp. 382–3210.1016/j.wear.2010.11.010Search in Google Scholar
18 K.Rajkumar, S.Aravindan: Tribological studies on microwave sintered copper–carbon nanotube composites, Wear270 (2011), No. 9–10, pp. 613–3210.1016/j.wear.2011.01.017Search in Google Scholar
19 J. S.Lin, L. W.Wang, G. H.Chen: Modification of graphene platelets and their tribological properties as a lubricant additive, Tribology Letters41 (2011), No. 1, pp. 209–3210.1007/s11249-010-9702-5Search in Google Scholar
20 J. F.Li, L.Zhang, J. K.Xiao, K. C.Zhou: Sliding wear behavior of copper-based composites reinforced with graphene nanosheets and graphite, Transactions of Nonferrous Metal Society of China25 (2015), No. 10, pp. 3354–3210.1016/S1003-6326(15)63970-XSearch in Google Scholar
21 M.Rashad, F. S.Pan, A. T.Tang, M.Asifd, M.Aamir e: Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MWCNTs) on mechanical properties of pure magnesium, Journal of Alloys & Compounds603 (2014), No. 9, pp. 111–3210.1016/j.jallcom.2014.03.038Search in Google Scholar
22 W.Xu, R.Hu, J. S.Li, Y. Z.Zhang, H. Z.Fu: Tribological behavior of MWCNTs-Cu and graphite−Cu composites with electric current, Transactions of Nonferrous Metals Society of China22 (2012), No. 1, pp. 78–3210.1016/S1003-6326(11)61143-6Search in Google Scholar
23 Z. S.Xu, Q. X.Zhang, X. L.Shi, W. Z.Zhai, Q. S.Zhu: Comparison of tribological properties of NiAl matrix composites containing graphite, carbon nanotubes, or graphene, Journal of Materials Engineering & Performance24 (2015), No. 5, pp. 1926–3210.1007/s11665-015-1482-5Search in Google Scholar
24 W.Xu, R.Hu, J. S.Li, H. Z.Fu: Effect of electrical current on tribological property of Cu matrix composite reinforced by carbon nanotubes, Transactions of Nonferrous Metals Society of China21 (2011), No. 10, pp. 2237–3210.1016/S1003-6326(11)61001-7Search in Google Scholar
25 K.Chu, C. C.Jia, L. K.Jiang, W. S.Li: Improvement of interface and mechanical properties in carbon nanotube reinforced Cu-Cr matrix composites, Materials & Design45 (2013), pp. 407–3210.1016/j.matdes.2012.09.027Search in Google Scholar
26 H. M.Mallikarjuna, C. S.Ramesh, P. G.Koppad, R.Keshavamurthy, K. T.Kashyap: Effect of carbon nanotube and silicon carbide on microstructure and dry sliding wear behavior of copper hybrid nanocomposites, Transactions of Nonferrous Metals Society of China26 (2016), No. 12, pp. 3170–3210.1016/S1003-6326(16)64449-7Search in Google Scholar
27 S.Asadikouhanjani, A.Zarebidaki, A.Akbari: The effect of sliding speed and amount of loading on friction and wear behavior of Cu-0.65 wt.-% Cr alloy, Journal of Alloys & Compounds486 (2009), No. 1–2, pp. 319–3210.1016/j.jallcom.2009.06.129Search in Google Scholar
28 S. W.Fan, L. T.Zhang, L. F.Cheng, G. L.Tian, S. J.Yang: Effect of braking pressure and braking speed on the tribological properties of C/SiC aircraft brake materials, Composites Science & Technology70 (2010), No. 6, pp. 959–3210.1016/j.compscitech.2010.02.012Search in Google Scholar
29 C.Chen, D. F.Diao: Tribological thermostability of carbon film with vertically aligned gaphene sheets, Tribology Letters50 (2013), No. 3, pp. 305–3210.1007/s11249-013-0129-7Search in Google Scholar
30 Y.Gao, J. C.Jie, P. C.Zhang, J.Zhang, T. M.Wang, T. J.Li: Wear behavior of high strength and high conductivity Cu alloys under dry sliding, Transactions of Nonferrous Metals Society of China25 (2015), No. 7, pp. 2293–3210.1016/S1003-6326(15)63844-4Search in Google Scholar
31 W. X.Qi, J. P.Tu, F.Liu, Y. Z.Yang, N. Y.Wang, H. M.Lu, X. B.Zhang, S. Y.Guo, M. S.Liu: Microstructure and tribological behavior of a peak aged Cu–Cr–Zr alloy, Materials Science & Engineering A343 (2003), No. 1–2, pp. 89–3210.1016/S0921-5093(02)00387-8Search in Google Scholar
32 Q. D.Xiao, S.Wu: Tribological behaviours of Ti3 SiC2 under current carrying conditions, Advances in Applied Ceramics113 (2014), No. 7, pp. 381–3210.1179/1743676114Y.0000000193Search in Google Scholar
33 H. M.Mallikarjuna, K. T.Kashyap, P. G.Koppad, C. S.Ramesh, R.Keshavamurthy: Microstructure and dry sliding wear behavior of Cu-Sn alloy reinforced with multiwalled carbon nano tubes, Transactions of Nonferrous Metals Society of China26 (2016), No. 7, pp. 1755–3210.1016/S1003-6326(16)64269-3Search in Google Scholar
34 M.Jahangiri, M.Hashempour, H.Razavizadeh, H. R.Rezaie: A new method to investigate the sliding wear behaviour of materials based on energy dissipation: W-25 wt.-% Cu composite, Wear274–275 (2012), No. 3, pp. 175–3210.1016/j.wear.2011.08.023Search in Google Scholar
35 Y. Z.Zhan, G.Zhang: Mechanical mixing and wear-debris formation in the dry sliding wear of copper matrix composite, Tribology Letters17 (2004), No. 3, pp. 581–3210.1023/B:TRIL.0000044508.54186.66Search in Google Scholar
36 T.Liu, W.Wood, B.Li, B.Lively, W. H.Zhong: Effect of reinforcement on wear debris of carbon nanofiber/high density polyethylene composites: Morphological study and quantitative analysis, Wear294–295 (2012), No. 31, pp. 326–3210.1016/j.wear.2012.07.010Search in Google Scholar
© 2017, Carl Hanser Verlag, München