Abstract
Findings about the microstructural features of, spring steels are necessary for the producers to enhance their mechanical properties. There are several reports revealing the basic relation between microstructure and fatigue performance. However, the results are commonly obtained from universal test procedures and have limited use due to the lack of real service conditions. In this study, the microstructural features of 51CrV4 alloy, used as spring steel component, were investigated by metallographic examinations starting from raw material to the final product. Its fatigue behavior was investigated using a self-designed test machine and a test procedure approved by the automotive industry to simulate the service conditions. Fractographic examination of fatigue failed surface was carried out to specify the effect of microstructural features on the fracture. It was concluded that (i) both oxide and decarburization layers were minimized by shot peening and (ii) although tested samples had superior fatigue resistance and failed above 105 cycles limit, oxide layer played a major role for crack initiation.
Kurzfassung
Erkenntnisse über die mikrostrukturellen Merkmale von Federstählen sind für Hersteller notwendig, um die mechanischen Eigenschaften zu verbessern. Es existieren verschiedene Berichte über eine grundlegende Relation zwischen der Mikrostruktur und der Performanz bei Ermüdungsbelastung. Allerdings werden die Ergebnisse üblicherweise mit universellen Prüfprozeduren gewonnen und haben aufgrund fehlender realer Einsatzbedingungen nur eine begrenzte Anwendbarkeit. In der diesem Beitrag zugrunde liegenden Studie wurden die mikrostrukturellen Merkmale der Legierung 51CrV4, die für Federstahlkomponenten eingesetzt wird, mittels metallografischer Verfahren untersucht, und zwar beginnend vom Rohmaterial bis hin zum fertigen Produkt. Hierzu wurde die Lebensdauer unter Ermüdungsbeanspruchung mittels einer selbstgefertigten Prüfmaschine und einer von der Automobilindustrie anerkannten Prüfprozedur untersucht, um die realen Einsatzbedingungen zu simulieren. Es wurde eine fraktografische Untersuchung der Schwingbruchoberflächen durchgeführt, um die Auswirkungen der mikrostrukturellen Merkmale auf die Bruchoberfläche zu spezifizieren. Daraus wurde geschlossen, dass sowohl die Oxid- als auch die entkohlten Schichten durch Kugelstrahlen minimiert werden, und dass die Oxidschicht eine wesentliche Bedeutung für die Rissinitiierung hat, obwohl die geprüften Proben eine überragende Ermüdungsresistenz hatten und erst über dem Limit von 105 Lastwechseln versagten.
References
1 P. K.Mallick: Materials, Design and Manufacturing for Lightweight Vehicles, Woodhead Publishing Limited, Cambridge, UK (2010)10.1533/9781845697822.2.275Search in Google Scholar
2 M. M.Shokrieh, D.Rezaei: Analysis and optimization of a composite leaf spring, Composite Structures60 (2003), No. 3, pp. 317–32510.1016/S0263-8223(02)00349-5Search in Google Scholar
3 H. A.Al-Qureshi: Automobile leaf springs from composite materials, Journal of Materials Processing Technology118 (2001), No. 1–3, pp. 58–6110.1016/S0924-0136(01)00863-9Search in Google Scholar
4 S.Krall, R.Zemann: Investigation of the dynamic behavior of CFRP leaf springs, Procedia Engineering100 (2015), pp. 646–65510.1016/j.proeng.2015.01.416Search in Google Scholar
5 B.Podgornik, V.Leskovšek, M.Godec, B.Senčič: Microstructure refinement and its effect on properties of spring steel, Materials Science and Engineering A599 (2014), pp. 81–8610.1016/j.msea.2014.01.054Search in Google Scholar
6 B.Podgornik, M.Torkar, J.Burja, M.Godec, B.Senčič: Improving properties of spring steel through nano-particles alloying, Materials Science and Engineering A638 (2015), pp. 183–18910.1016/j.msea.2015.04.082Search in Google Scholar
7 A.Tump, R.Brandt: Graded high-strength spring-steels by a special inductive heat treatment, IOP Conference Series: Materials Science and Engineering118 (2016), pp. 1–610.1088/1757-899X/118/1/012021Search in Google Scholar
8 A.Kubit, M.Bucior, W.Zielecki, F.Stachowicz: The impact of heat treatment and shot peening on the fatigue strength of 51CrV4 steel, Procedia Structural Integrity2 (2016), pp. 3330–333610.1016/j.prostr.2016.06.415Search in Google Scholar
9 W.Lei, T.Sakai, M.Wakita, S.Mimura: Influence of microstructure and surface defect on very high cycle fatigue properties of clean spring steel, International Journal of Fatigue60 (2014), pp. 48–5610.1016/j.ijfatigue.2013.06.017Search in Google Scholar
10 Y.Harada, S.Tanaka, M.Itoh, M.Nakatani: Effect of microshot peening on fatigue life of spring steel SUP9, Procedia Engineering81 (2014), pp. 1493–149810.1016/j.proeng.2014.10.179Search in Google Scholar
11 A. A.Barani, D.Ponge, D.Raabe: Refinement of grain boundary carbides in a Si-Cr spring steel by thermomechanical treatment, Materials Science and Engineering A426 (2006), No. 1–2, pp. 194–20110.1016/j.msea.2006.04.002Search in Google Scholar
12 R.Fragoudakis, S.Karditsas, G.Savaidis, N.Michailidis: The effect of heat and surface treatment on the fatigue behavior of 56SiCr7 spring steel, Procedia Engineering74 (2014), pp. 309–31210.1016/j.proeng.2014.06.268Search in Google Scholar
13 P.Ganesh, R.Sundar, H.Kumar, R.Kaul, K.Ranganathan, P.Hedaoo, G.Raghavendra, S. A.Kumar, P.Tiwari, D. C.Nagpure, K. S.Bindra, L. M.Kukreja, S. M.Oak: Studies on fatigue life enhancement of pre-fatigued spring steel specimens using laser shock peening, Materials & Design54 (2014), pp. 734–74110.1016/j.matdes.2013.08.104Search in Google Scholar
14 Y.Harada, K.Mori: Effect of processing temperature on warm shot peening of spring steel, Journal of Materials Processing Technology162–163 (2005), pp. 498–50310.1016/j.jmatprotec.2005.02.095Search in Google Scholar
15 J. C.Shin, S.Lee, J. H.Ryu: Correlation of microstructure and fatigue properties of two high-strength spring steels, International Journal of Fatigue21 (1999), No. 6, pp. 571–57910.1016/S0142-1123(99)00010-9Search in Google Scholar
16 R.Puff, R.Barbieri: Effect of non-metallic inclusions on the fatigue strength of helical spring wire, Engineering Failure Analysis44 (2014), pp. 441–45410.1016/j.engfailanal.2014.05.013Search in Google Scholar
17 W.Li, T.Sakai, M.Wakita, S.Mimura: Effect of surface finishing and loading condition on competing failure mode of clean spring steel in very high cycle fatigue regime, Materials Science and Engineering A552 (2012), pp. 301–30910.1016/j.msea.2012.05.044Search in Google Scholar
18 H.Mayer, R.Schuller, U.Karr, M.Fitzka, D.Irrasch, M.Hahn, M.Bacher-Höchst: Mean stress sensitivity and crack initiation mechanisms of spring steel for torsional and axial VHCF loading, International Journal of Fatigue93 (2016), pp. 309–31710.1016/j.ijfatigue.2016.04.017Search in Google Scholar
19 H.Mayer, R.Schuller, U.Karr, D.Irrasch, M.Fitzka, M.Hahn, M.Bacher-Höchst: Cyclic torsion very high cycle fatigue of VDSiCr spring steel at different load ratios, International Journal of Fatigue70 (2015), pp. 322–32710.1016/j.ijfatigue.2014.10.007Search in Google Scholar
© 2017, Carl Hanser Verlag, München