Abstract
Polymer matrix composites (PMCs) play an increasingly important role in everyday life from energy conservation to national security. Recently, PMCs have been found to be used for sanitaryware due to their low density, giving a sense of warmth, which allows application for broad aesthetic features, high impact resistance, the ease of shaping and the possibility to produce thin sections. It is an alternative to ceramic sanitaryware products. While thin section PMC products range in the forefront with lightness and aesthetic features, thick section PMC products are aroused interest because of the impact resistance and ease of production. Little attention is devoted to the characterization of PMC sanitarywares up to date. Therefore, in order to identify manufacturing processes and determination of the chemical and mineralogical composition, optical microscopy, scanning electron microscopy (SEM) with SE, BSE and EDX detector, X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF) and thermogravimetric (TG/DTA) analysis of commercial PMC sanitarywares with two different structures (thick and thin sections) were carried out. Mechanical properties such as three-point flexural strength, flexural modulus and impact resistance were identified. As a result of these studies, matrix to filler ratio, filler shape, size and composition and manufacturing technique of PMC sanitarywares were determined. Such understanding is necessary in order to satisfy the market request and to improve the properties of the sanitarywares.
Kurzfassung
Polymermatrixkomposite (Polymer Matrix Composites (PMCs)) nehmen einen zunehmenden Stellenwert im täglichen Leben ein, angefangen von der Energieeinsparung bis hin zur nationalen Sicherheit. Kürzlich konnten PMCs in einer neuen Anwendung für Sanitärprodukte eingesetzt werden, und zwar aufgrund ihres geringen spezifischen Gewichtes, des Wärmegefühls, der möglichen Einsetzbarkeit für eine breite Palette von ästhetischen Merkmalen, der hohen Schlagfestigkeit sowie der einfachen Formgebung und der Möglichkeit, dünne Querschnitte produzieren zu können. Sie stellen eine Alternative zu keramischen Sanitärprodukten dar. Während dünnwandige PMC-Produkte aufgrund ihrer Leichtigkeit und ihrer ästhetischen Merkmale an erster Stelle stehen, haben auch dickwandige PMC-Produkte aufgrund ihrer Schlagfestigkeit und der leichten Herstellbarkeit Interesse geweckt. Allerdings wurde der Charakterisierung von PMC-Sanitärprodukten bisher wenig Aufmerksamkeit geschenkt. Um daher Herstellprozesse zu identifizieren und um die chemische und mineralische Zusammensetzung zu bestimmen, wurden Lichtmikroskopie, Rasterelektronenmikroskopie mit SE-, BSE- und EDX-Detektor, Röntgendiffraktometrie (XRD), Röntgenfluoreszenz Spektroskopie (XRF) und Thermogravimetrische Analyse (TG/DTA) eingesetzt, um kommerzielle PMC-Sanitärprodukte mit zwei verschiedenen Strukturen (dünnwandig und dickwandig) zu untersuchen. Es wurden die mechanischen Eigenschaften, wie die Drei-Punkt-Biegefestigkeit und die Schlagfestigkeit ermittelt. Als ein Ergebnis der diesem Beitrag zugrunde liegenden Studie wurden das Verhältnis von Matrix zu Füllmaterial, die Füllwerkstoffform, -größe und -zusammensetzung sowie das Herstellverfahren ermittelt. Ein diesbezügliches Verständnis wird als notwendig erachtet, um die Marktanforderungen zu erfüllen und um die Eigenschaften der Sanitärprodukte zu verbessern.
References
1 D.Fortuna: Ceramic Technology Sanitaryware, Gruppo Editoriale Faenza Editrice, Spain (2000)Search in Google Scholar
2 UNI 4542: Sanitary Appliances, Terminology and Classification, Italian Standardization Institute, Rome, Italy (1986)Search in Google Scholar
3 BS 3402: Specification for Quality of Vitreous China Sanitary Appliances, British Standardization Institute, London, UK (1969)Search in Google Scholar
4 R.Anwar, H. R.Kamarun, V. V.Vermol, O. H.Hassan: Marble dust incorporate in standard local ceramic body as enhancement in sanitaryware products, Proc. of the IEEE Colloquium on Humanities, Science and Engineering Research (CHUSER 2011), IEEE Xplore, Penang, Malaysia (2011), pp. 355–357Search in Google Scholar
5 R.Bartusch: Energy saving potentials in the ceramic industry, Interceram53 (2004), No. 5, pp. 312–317Search in Google Scholar
6 F.Singer, S. S.Singer: Industrial Ceramics, 1st Ed., Chapman and Hall, London, UK (1963)10.1007/978-94-017-5257-2Search in Google Scholar
7 http://www.duravit.com.tr/website/anasayfa/ueruenler/malzeme_bilgisi/vitrifiye.tr-tr.html (04-13-2017)Search in Google Scholar
8 D. Y.Tuncel, E.Özel: Evaluation of pyroplastic deformation in sanitaryware porcelain bodies, Ceramics International38 (2012), No. 2, pp. 1399–140710.1016/j.ceramint.2011.09.019Search in Google Scholar
9 http://www.stainlessdesign.co.uk/acatalog/index.html (04-13-2017)Search in Google Scholar
10 http://www.wallgate.comv (04-13-2017)Search in Google Scholar
11 http://miral.burgbad.de/en/mineral-cast (04-13-2017)Search in Google Scholar
12 http://www.mbd-bathrooms.co.uk (04-13-2017)Search in Google Scholar
13 http://www.kaolin.com.tr/imagess/hpfproduktu%CC%88bersich_gdzv2t2_17936.pdf (04-13-2017)Search in Google Scholar
14 http://www.dupont.com/products-and-services/construction-materials/surface-design-materials/brands/corian-solid-surfaces.html (04-13-2017)Search in Google Scholar
15 http://www.lghausys.com/eng/product/interior/surfaces/subindex_ss.jsp (04-13-2017)Search in Google Scholar
16 http://www.gypsysanitaryware.co.za/aboutus1.htm (04-13-2017)Search in Google Scholar
17 A.Aruniit, J.Kers, K.Tall: Influence of filler proportion on mechanical and physical properties of particulate composite, Agronomy Research Biosystem Engineering1 (2011), pp. 23–29Search in Google Scholar
18 R. M.Wang, S. R.Zheng, Y.Zheng: Polymer Matrix Composites and Technology, 1st Ed., Woodhead Publishing Ltd. and Science Press, Cornwall, UK (2011)Search in Google Scholar
19 P. G.Osborn, D. W. J.Osmond, B. J.Thorpe: Inorganic Reinforcing Phase Dispersed and Bonded to Polymer Matrix, United State Patents, US4251576 A (1981)Search in Google Scholar
20 L.Chi: Resin-Based Composite Sanitary Ware and Preparation Method United State Patents, US8474070 B2 (2013)Search in Google Scholar
21 S.Black: Cast polymer categories, Composites World19 (2013), No. 4, pp. 28–33Search in Google Scholar
22 ASTM C1605-04: Standard Test Methods for Chemical Analysis of Ceramic Whiteware Materials Using Wavelength Dispersive X-rRay Fluorescence Spectrometry, ASTM International, West Conshohocken, PA, USA (2014)Search in Google Scholar
23 ASTM C323-56: Standard Test Methods for Chemical Analysis of Ceramic Whiteware Clays, ASTM International, West Conshohocken, PA, USA (2016)Search in Google Scholar
24 ASTM D2584-08: Standard Test Method for Ignition Loss on Cured Reinforced Resins, ASTM International, West Conshohocken, PA, USA (2008)Search in Google Scholar
25 ASTM D256-10e1: Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics, ASTM International, West Conshohocken, PA, USA (2010)Search in Google Scholar
26 ASTM D790-17: Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, PA, USA (2017)Search in Google Scholar
27 G.Açıkbaş, S.Özcan, N. ÇalışAçıkbaş: Production and characterization of a hybrid polymer matrix compositePolymer Composites (2017) 10.1002/pc.24471Search in Google Scholar
28 W. A.Hanna, F. E.Gharib, I. I.Marhoon: Characterization of ceramic filled polymer matrix composite used for biomedical application, Journal of Minerals & Materials Characterization & Engineering10 (2011), No. 12, pp. 1167–117810.4236/jmmce.2011.1012089Search in Google Scholar
29 http://www.poliya.com/en/products/polipol_polyester/solid_surface_casting/ (accessed 04-13-2017)Search in Google Scholar
30 N. CalisAcikbas, G.Acikbas: Epoxy matrix composites containing urea formaldehyde waste particulate filler, Waste and Biomass Valorization8 (2017), No. 3, pp. 669–67810.1007/s12649-016-9651-9Search in Google Scholar
31 G.Acikbas, N. CalisAcikbas, E.Ikizek, M.Ozel, A. S.Eker: Characterization of green epoxy matrix composites filled with ceramic wastes, Proc. of the 2nd International Symposium on Innovative Technologies in Engineering and Science, Karabuk, Turkey (2014), pp. 597–606Search in Google Scholar
32 M.Koleva, A.Zheglov, V.Vassilev, E.Fidancevska, M.Milosevski, G.Vassilev: Strength characteristics of polymer composites with waste dust from power production, Proc. of International Scientific Conference (UNITECH'07), Technical University of Gabrovo, Gabrova, Bulgaria (2007), pp. 47–52Search in Google Scholar
33 I. A.Madugu, M.Abdulwahab, V. S.Aigbodion: Effect of iron fillings on the properties and microstructure of cast fiber-polyester/iron filings particulate composite, Journal of Alloys Compounds476 (2009), No. 1, pp. 807–81110.1016/j.jallcom.2008.09.165Search in Google Scholar
34 F. N.Ahmad, M.Jaafar, S.Palaniandy, K. A. M.Azizli: Effect of particle shape of silica mineral on the properties of epoxy composites, Composites Science and Technology68 (2008), pp. 346–35310.1016/j.compscitech.2007.07.015Search in Google Scholar
35 M. S.Sreekanth, V. A.Bambole, S. T.Mhaske, P. A.Mahanwar: Effect of concentration of mica on properties of polyester thermoplastic elastomer composites, Journal of Minerals & Materials Characterization & Engineering8 (2009), No. 3, pp. 271–28210.4236/jmmce.2009.84024Search in Google Scholar
© 2017, Carl Hanser Verlag, München