Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 15, 2018

Effects of process parameters on the quality of PLA products fabricated by fused deposition modeling (FDM): surface roughness and tensile strength

Auswirkungen der Prozessparameter auf die Qualität beim Fused Deposition Modeling (FDM): Oberflächenrauheit und Zugfestigkeit
  • Mirigul Altan , Meltem Eryildiz , Beril Gumus and Yusuf Kahraman
From the journal Materials Testing

Abstract

This study investigates the effects of process parameters on the quality of products fabricated by fused deposition modeling (FDM), such as surface roughness and tensile strength. Polylactic acid (PLA) samples were built on a FDM machine at various layer thicknesses, nozzle temperature and deposition head velocity. The effect of cooling the samples during the process was also considered. The experimental study was performed according to a mixed type Taguchi L16 orthogonal array. The effectiveness of each parameter was also discussed by an analysis of variance (ANOVA). The tensile strength results were compatible with the optical images of the fracture surfaces while the surface roughness results were compatible with the surface topography of the parts along the thickness. The two dominant quality characteristics were found to be layer thickness and deposition head velocity. Lower layer thickness values yielded higher tensile strength and lower surface roughness. Use of a cooling fan and nozzle temperature were found to be the least effective parameters. Finally, the results indicated that tensile strength and surface quality of the FDM samples improved about 25 %, and 12 %, respectively at optimal process conditions.

Kurzfassung

In diesem Beitrag wird über Untersuchungen zu den Auswirkungen der Prozessparameter im Fused Deposition Modeling (FDM) auf die Qualität der Teile berichtet, die Oberflächenrauheit und die Zugfestigkeit. Hierzu wurden Teile aus Polymilchsäure (Polylactic Acid (PLA)) auf einer FDM-Maschine mit einer unterschiedlichen Lagendicke, Düsentemperatur und Kopfgeschwindigkeit hergestellt. Der Effekt eines Kühlventilators wurde auch beobachtet. Die experimentelle Studie wurde mittels eines gemischten orthogonalen L16 Array nach dem Taguchi-verfahren ausgeführt. Die Effektivität eines jeden Parameters wurde außerdem mittels Variantenanalyse diskutiert. Die Ergebnisse der Zugfestigkeit wurden den optischen Bildern der Bruchoberflächen zugeordnet, während die Ergebnisse der Oberflächenrauheit der Oberflächentopografie in Dickenrichtung der Teile zugeordnet wurden. Als dominante Faktoren auf die beiden Qualitätscharakteristika wurden die Lagendicke und die Kopfgeschwindigkeit ermittelt. Niedrigere Werte der Lagendicke ergaben eine höhere Zugfestigkeit und eine niedrigere Oberflächenrauheit. Die Anwesenheit eines Kühlventilators und die Düsentemperatur wurden als am wenigsten effektive Parameter identifiziert. Die optimalen Prozessbedingungen der beiden Antworten waren voneinander unterschiedlich. Die Zugfestigkeit der PLA Proben wurden um 25 % verbessert, wenn die Prozessparameter optimal gewählt wurden. In ähnlicher Weise wurde die Oberflächenrauheit um 12 % verbessert.


*Correspondence Address, Meltem Eryildiz, Material Science & Manufacturing Technologies Division, Department for Mechanical Engineering, Yildiz Technical University, 34349 Besiktas, Istanbul, Turkey. E-mail:

Associate Prof. Dr. Mirigul Altan, born in 1977, works at Yildiz Technical University, Istanbul, Turkey. She obtained her PhD degree at the Department of Mechanical Engineering of Yildiz technical University. Her research interests mainly focus on polymers, plastic processing technologies, polymer composites and polymernano composites.

Meltem Eryildiz, born in 1987, is a PhD candidate and a research assistant at Yildiz Technical University, Istanbul, Turkey. She obtained her Bachelor's degree and Master's degree in the Department of Mechanical Engineering at Yildiz Technical University in 2009 and 2014 respectively. Her research interests mainly focus on polymer composites, polymernano composites and manufacturing processes.

Dr. Beril Gumuş, born in 1975, is an expert on Mechanical Testing at Yildiz Technical University, Istanbul, Turkey. She obtained her PhD degree in the Department of Mechanical Engineering at Marmara University, Istanbul, Turkey in 2014. Her research interests mainly focus on manufacturing processes.

Yusuf Kahraman, born in 1989, is a PhD candidate and a researcher at Yildiz Technical University, Istanbul, Turkey. He obtained his Bachelor's degree at the Department of Metallurgical and Materials Engineering at Yildiz Technical University in 2012. His research interests mainly focus on micro materials.


References

1 H.Bikas, P.Stavropoulos, G.Chryssolouris: Additive manufacturing methods and modelling approaches: a critical review, International Journal on Emerging Technologies83 (2016), pp. 38940510.1007/s00170-015-7576-2Search in Google Scholar

2 S.Manikandan, A. S. S.Kumar, C.Sharma, V. P.Raja, A.Adhiyamaan: Investigation on the effect of fused deposition modeling process parameters on flexural and surface roughness properties of PC-ABS blend, International Journal on Recent Technologies in Mechanical and Electrical Engineering2 (2015), No. 8, pp. 4147Search in Google Scholar

3 J. P.Patel, C. P.Patel, U. J.Patel: A review on various approach for process parameter optimization of fused deposition modeling (FDM) process and Taguchi approach for optimization, International Journal of Engineering Research and Applications2 (2012), No. 2, pp. 361365Search in Google Scholar

4 A.Boschetto, L.Bottini: Design for manufacturing of surfaces to improve accuracy in fused deposition modeling, Robotics and Computer-Integrated Manufacturing37 (2016), pp. 10311410.1016/j.rcim.2015.07.005Search in Google Scholar

5 L. M.Galantucci, F.Lavecchia, G.Percoco: Experimental study aiming to enhance the surface finish of fused deposition modeled parts, CIRP Annals – Manufacturing Technology58 (2009), pp. 18919210.1016/j.cirp.2009.03.071Search in Google Scholar

6 R. A.Jadav, B.Solanki: Investigation on parameter optimization of fused deposition modeling (FDM) for better mechanical properties – a review, IJSRD – International Journal for Scientific Research & Development3 (2015), No. 1, pp. 981984Search in Google Scholar

7 J.Santhakumar, R.Maggirwar, S.Gollapudi, S.Karthekeyan, N.Kalra: Enhancing impact strength of fused deposition modeling built parts using polycarbonate material, Indian Journal of Science and Technology9 (2016), No. 34, pp. 1610.17485/ijst/2016/v9i34/100983Search in Google Scholar

8 R.Anitha, S.Arunachalam, P.Radhakrishnan: Critical parameters influencing the quality of prototypes in fused deposition modelling, Journal of Materials Processing Technology118 (2001), pp. 38538810.1016/S0924-0136(01)00980-3Search in Google Scholar

9 B. V.Nidagundi, R.Keshavamuthy, S. P. C.Prakash: Studies on parametric optimization for fused deposition modelling process, 4th International Conference on Materials Processing and Characterization, Materials Today: Proceedings2 (2015), pp. 16911699, 10.1016/j.matpr.2015.07.097Search in Google Scholar

10 A. K.Sood, R. K.Ohdar, S. S.Mahapatra: Improving dimensional accuracy of fused deposition modelling processed part using grey taguchi method, Materials and Design30 (2009), pp. 4243425210.1016/j.matdes.2009.04.030Search in Google Scholar

11 S. D.Kumar, V. N.Kannan, G.Sankaranarayanan: Parameter optimization of ABS-M30i parts produced by fused deposition modeling for minimum surface roughness, International Journal of Current Engineering and Technology (2014), No. 3, pp. 9397Search in Google Scholar

12 M.Alhubail, D.Alenezi, B.Aldousiri: Taguchi-based optimisation of process parameters of fused deposition modelling for improved part quality, International Journal of Engineering Research & Technology2 (2013), No. 12, pp. 25052519Search in Google Scholar

13 A. O.Mohamed, H. S.Masood, L. J.Bhowmik: Optimization of fused deposition modeling process parameters: a review of current research and future prospects, Adv Manuf3 (2015), No. 1, pp. 425310.1007/s40436-014-0097-7Search in Google Scholar

14 S. H.Ahn, M.Montero, D.Odell, S.Roundy, P. K.Wright: Anisotropic material properties of fused deposition modeling ABS, Rapid Prototyping8 (2002), No. 4, pp. 24825710.1108/13552540210441166Search in Google Scholar

15 C.Mendonsa, K. V.Naveen, P.Upadhyaya, V. D.Shenoy: Influence of FDM process parameters on build time using taguchi and ANOVA approach, International Journal of Science and Research4 (2015), No. 2, pp. 330333Search in Google Scholar

16 C. S.Lee, S. G.Kim, H. J.Kim, S. H.Ahn: Measurement of anisotropic compressive strength of rapid prototyping parts, Journal of Material Processing Technology (2007), No. 187-188, pp. 63763010.1016/j.jmatprotec.2006.11.095Search in Google Scholar

17 R. H.Sanatgar, C.Campagne, V.Nierstrasz: Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: effect of FDM printing process parameters, Applied Surface Science403 (2017), pp. 55156310.1016/j.apsusc.2017.01.112Search in Google Scholar

18 F.Rayegani, G. C.Onwubolu: Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE), The International Journal of Advanced Manufacturing Technology73 (2014), pp. 50951910.1007/s00170-014-5835-2Search in Google Scholar

19 A. K.Sood, R. K.Ohdar, S. S.Mahapatra: Experimental investigation and empirical modeling of FDM process for compressive strength improvement, Journal of Advanced Research3 (2011), pp. 819010.1016/j.jare.2011.05.001Search in Google Scholar

20 M.Kaveh, M.Badrossamay, E.Foroozmehr, A. H.Etefagh: Optimization of the printing parameters affecting dimensional accuracy and internal cavity for HIPS material used in fused deposition modeling processes, Journal of Materials Processing Technology226 (2015), pp. 28028610.1016/j.jmatprotec.2015.07.012Search in Google Scholar

21 T.Nancharaiah, V. R.Raju: An experimental investigation on surface quality and dimensional accuracy of FDM components, International Journal on Emerging Technologies1 (2010), No. 2, pp. 106111Search in Google Scholar

22 D.Horvath, R.Noorani, M.Mendelson: Improvement of surface roughness on ABS 400 polymer using design of experiments (DOE), Materials Science Forum (2007), No. 561–565, pp. 2389239210.4028/www.scientific.net/MSF.561-565.2389Search in Google Scholar

23 P. J.Nuñeza, A.Rivasa, E.García-Plazaa, E.Beamudb, A.Sanz-Loberac: Dimensional and surface texture characterization in fused deposition modelling (FDM) with ABS plus, Procedia Engineering132 (2015), pp. 85686310.1016/j.proeng.2015.12.570Search in Google Scholar

24 K.Chou, Y. A.Zhang: Parametric study of part distortion in fused deposition modeling using three dimensional element analysis, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture222 (2008), No. 8, pp. 95996810.1243/09544054JEM990Search in Google Scholar

25 Y. M.Huang, H. Y.Lan: Path planning effect on the accuracy of rapid prototyping system, Int J Adv Manuf Technol30(2006), pp. 23324610.1007/s00170-005-0085-ySearch in Google Scholar

26 H.Xiaomao, Y.Chunsheng, H.Yongjun: Tool path planning based on endpoint build-in optimization in rapid prototyping, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science225 (2011), pp. 29192926, 10.1177/0954406211411643Search in Google Scholar

Published Online: 2018-11-15
Published in Print: 2018-05-26

© 2018, Carl Hanser Verlag, München

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.3139/120.111178/html
Scroll to top button