Skip to content
BY 4.0 license Open Access Published by De Gruyter September 26, 2018

On the estimation of cyclic material properties – Part 1: Quality of known estimation methods

Dedicated to Professor Dr.-Ing. Harald Zenner on the occasion of his eightieth birthday

Zur Abschätzung zyklischer Werkstoffkennwerte – Teil 1: Güte bekannter Abschätzmethoden
  • Michael Wächter and Alfons Esderts
From the journal Materials Testing


A large variety of methods for estimating cyclic material properties from quasi-static material properties can be found throughout the literature. Therefore, the user usually faces the problem of determining which methods would best suit his purpose. To help answer this question, a massive database containing test results from quasi-static and cyclic tests is gathered and used for a quality rating of the different methods. This rating results in the recommendation to use the uniform material law for steel materials, the modified park-song's method for wrought aluminum and the method of variable slopes 2006 for thin steel sheets. In addition, the accuracy of these estimation methods is compared to experimental results using deviation ranges in the total strain life curve and in the cyclic stress-strain curve.


In der Literatur lässt sich eine große Anzahl von Methoden zur Abschätzung zyklischer Werkstoffkennwerte basierend auf quasistatischen Werkstoffkennwerten finden. Hierdurch gerät der Anwender in die Situation nicht zu wissen, welche dieser Methoden er verwenden soll. Um ihn bei der Beantwortung dieser Frage zu unterstützen, wurde eine große Datenbasis mit Ergebnissen quasistatischer und zyklischer Versuche zusammengetragen und mit ihr die Güte der verschiedenen Schätzmethoden bewertet. Diese Bewertung führt zu der Empfehlung, das Uniform Material Law für Stahlwerkstoffe, die Modified Park-Song's Method für Aluminiumknetlegierungen und die Method of variable Slopes 2006 für dünne Stahl-Feinbelche zu verwenden. Außerdem wird die Güte dieser Abschätzmethoden mit der Güte experimenteller Ergebnisse mithilfe der Streuspanne für die Gesamtdehnungswöhlerlinie sowie die zyklische Spannungs-Dehnungs-Kurve verglichen.

*Correspondence Address, Dr.-Ing. Michael Wächter, Institut für Maschinelle Anlagentechnik, und Betriebsfestigkeit, TU Clausthal, Leibnizstraße 32, 38678 Clausthal-Zellerfeld, Germany, E-mail:

Dr.-Ing. Michael Wächter, born in 1986, studied Mechanical Engineering at Clausthal University of Technology (TUC), Germany and has been a scientific employee at the Institute for Plant Engineering and Fatigue Analysis (IMAB) of TUC since 2011. He finished his PhD thesis on the determination of cyclic material properties and S-N curves for damage parameters in 2016.

Professor Dr.-Ing. Alfons Esderts, born in 1963, studied Mechanical Engineering at Clausthal University of Technology (TUC), Germany and finished his PhD thesis in 1995. Between 1995 and 2003 he was head of the “Fatigue Analysis” department at Deutsche Bahn AG in Minden, Germany. Since 2003 he has been a professor at TUC and the head of the Institute for Plant Engineering and Fatigue Analysis (IMAB). In addition, he has been vice-president for research and technology transfer at TUC since 2015.


1 N. E.Dowling: Mechanical Behavior of Materials. Engineering Methods for Deformation, Fracture, and Fatigue, 4th Ed., Pearson, Boston, USA (2013)Search in Google Scholar

2 M.Wächter: Zur Ermittlung zyklischer Werkstoffkennwerte und Schädigungsparameterwöhlerlinien, Dr.-Ing. Thesis, Clausthal University of Technology, Clausthal-Zellerfeld, Germany (2016) 10.21268/20161013-153328Search in Google Scholar

3 M.Wächter, A.Esderts: Contribution to the Estimation of Cycliyc Material Properties, T.Beck, E.Charkaluk (Eds.): LCF8. Eighth International Conference on Low Cycle Fatigue, DVM, Dresden, Germany (2017), pp. 457462Search in Google Scholar

4 L. F.CoffinJr., N. Y.Schenectady: A study of the effects of cyclic thermal stresses on a ductile Metal, Transactions of the American Society of Mechanical Engineers76 (1954), pp. 931950Search in Google Scholar

5 S. S.Manson: Fatigue: A complex subject – Some simple approximations, Experimental Mechanics (1965), 5, pp. 193226Search in Google Scholar

6 F. C.Campbell: Elements of Metallurgy and Engineering Alloys, 1st Ed., ASM International, Ohio, USA (2008)10.31399/asm.tb.emea.9781627082518Search in Google Scholar

7 W.Ramberg, W. R.Osgood: Description of stress-strain curves by three parameters, Technical Note No. 902, National Advisory Committee for Aeronautics, Washington DC, USA (1943)Search in Google Scholar

8 S.Klee: Das zyklische Spannungs-Dehnungs- und Bruchverhalten verschiedener Stähle, Dr.-Ing. Thesis, TH Darmstadt, Darmstadt, Germany (1973)Search in Google Scholar

9 A.Fatemi, A.Plaseied, A. K.Khosrovaneh, D.Tanner: Application of bi-linear log–log S–N model to straincontrolled fatigue data of aluminum alloys and its effect on life predictions, International Journal of Fatigue27 (2005), No. 9, pp. 1040105010.1016/j.ijfatigue.2005.03.003Search in Google Scholar

10 R. W.Wagener: Zyklisches Werkstoffverhalten bei konstanter und variabler Beanspruchungsamplitude, Dr.-Ing Thesis, Clausthal University of Technology, Clausthal-Zellerfeld, Germany (2007)Search in Google Scholar

11 R.Wagener, T.Melz: Deriving a continuous fatigue life curve from LCF to VHCF, SAE Technical Paper 2017-01-0330 (2017) 10.4271/2017-01-0330Search in Google Scholar

12 ASTM E606-04: Standard Practice for Strain-Controlled Fatigue Testing, ASTM International, West Conshohocken, PA, USA (2004)Search in Google Scholar

13 BS 7270: 2006: Metallic Materials – Constant Amplitude Strain Controlled Axial Fatigue – Method of Test, BSI, London, Great Britain (2006)Search in Google Scholar

14 STAHL-EISEN-Prüfblatt SEP 1240: Testing and Documentation Guideline for the Experimental Determination of Mechanical Properties of Steel Sheets for CAE-Calculations, 1st Ed., VDEh, Düsseldorf, Germany (2006)Search in Google Scholar

15 ASTM E739-80: Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data, ASTM International, West Conshohocken, PA, USA (1980)Search in Google Scholar

16 A.BäumelJr., T.Seeger: Materials Data for Cyclic Loading, Supplement 1, 1st Ed., Elsevier, Amsterdam, The Netherlands (1990)Search in Google Scholar

17 A.Nieslony, C. elDsoki, H.Kaufmann, P.Krug: New method for evaluation of the Manson–Coffin–Basquin and Ramberg–Osgood equations with respect to compatibility, International Journal of Fatigue30 (2008), No. 10–11, pp. 1967197710.1016/j.ijfatigue.2008.01.012Search in Google Scholar

18 M.Wächter, A.Esderts: Contribution to the evaluation of stress-strain and strain-life curves, Z.Wei, K.Nikbin, P. C.McKeighan, D. G.Harlow (Eds.): Fatigue and Fracture Test Planning, Test Data Acquisitions and Analysis, ASTM STP1598, ASTM International, West Conshohocken, PA, USA (2017), pp. 15118510.1520/STP159820160050Search in Google Scholar

19 A.Hatscher: Abschätzung zyklischer Kennwerte von Stählen, Dr.-Ing. Thesis, Clausthal University of Technology, Clausthal-Zellerfeld, Germany (2004)Search in Google Scholar

20 K.Iida, E.Fujii: Low Cycle Fatigue Strength of Steels and Welds in Relation to Static Tensile Properties, IIW Doc. XIII-816-77 (1977)10.1016/B978-0-08-022140-3.50050-1Search in Google Scholar

21 D. F.Socie, M. R.Mitchell, E. M.Caulfield: Fundamentals of Modern Fatigue Analysis, Fracture Control Program, Report No. 26, University of Illinois, Illinois, USA (1977)Search in Google Scholar

22 U.Muralidharan, S. S.Manson: A modified universal slopes equation for estimation of fatigue characteristics of metals, Journal of Engineering Materials and Technology110 (1988), No. 1, pp. 555810.1115/1.3226010Search in Google Scholar

23 J. H.Ong: An improved technique for the prediction of axial fatigue life from tensile data, International Journal of Fatigue15 (1993), No. 3, pp. 21321910.1016/0142-1123(93)90179-TSearch in Google Scholar

24 J.-H.Song, J.-H.Park: New proposals for estimation of fatigue characteristics of metals, G. Lütjering, H. Nowack: Fatigue ’96, Proc. of the Sixth International Fatigue Congress, Volume II, Pergamon, Berlin, Germany (1996), pp. 13591364Search in Google Scholar

25 R.Masendorf: Einfluss der Umformung auf die zyklischen Werkstoffkennwerte von Feinblech, Dr.-Ing. Thesis, Clausthal University of Technology, Clausthal-Zellerfeld, Germany (2000)Search in Google Scholar

26 M. L.Roessle, A.Fatemi: Strain-controlled fatigue properties of steels and some simple approximations, International Journal of Fatigue22 (2000), No. 6, pp. 49551110.1016/S0142-1123(00)00026-8Search in Google Scholar

27 M. A.Meggiolaro, J. T. P.Castro: Statistical evaluation of strain-life fatigue crack initiation, International Journal of Fatigue26 (2004), No. 5, pp. 46347610.1016/j.ijfatigue.2003.10.003Search in Google Scholar

28 A.Esderts, V.Thoms, R.Wagener, M.Schatz: Leichtbau mit Hilfe von zyklischen Werkstoffkennwerten für Strukturen aus umgeformtem höherfesten Feinblech, FAT-Schriftenreihe 191, FAT, Frankfurt am Main, Germany (2005)Search in Google Scholar

29 A.Hatscher, T.Seeger, H.Zenner: Abschätzung von zyklischen Werkstoffkennwerten. Erweiterung und Vergleich bisheriger Ansätze, Materialprüfung49 (2007), No. 3, pp. 819310.3139/120.100795Search in Google Scholar

30 J.Li, Z. P.Zhang, C. W.Li.: Some useful approximations for wrought aluminum alloys based on monotonic tensile properties and hardness, Materialwissenschaft und Werkstofftechnik49 (2018), No. 1, pp. 8910010.1002/mawe.201700016Search in Google Scholar

31 ISO 6892-1: 2016: Metallic Materials – Tensile testing – Part 1: Method of Test at Room Temperature, ISO, Geneva, Switzerland (2016)Search in Google Scholar

Published Online: 2018-09-26
Published in Print: 2018-10-27

© 2018, Carl Hanser Verlag, München

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 8.12.2023 from
Scroll to top button