Abstract
Laser cladding of Stellite 31 powder on AISI 316L plate size of 50 × 50 × 25 mm using diode laser powers of 3.5, 4.0, 4.5 and 5.0 kW was produced. The wear tests of clad layers were investigated according to ASTM G99. Equiaxed and elongated grains were found in clad layer using laser powers of 3.5, 4.0 kW and 4.0, 5.0 kW, respectively. Compressive residual stress was detected at the surface of the clad layers. They decreased as laser power increased. After polishing, compressive residual stress and the wear resistance of the clad layers subjected to higher laser power were higher than those subjected to lower laser power. The friction coefficient of the clad layer subjected to higher laser power was lower than that subjected to lower laser power.
Kurzfassung
Mit einem Diodenlaser wurden bei Leistungen von 3,5, 4,0, 4,5 and 5,0 kW Schichten aus einem Stellite 31 Pulver auf eine Stahlplatte des Typs AISI 316L mit einer Größe von 50 × 50 × 25 mm aufgebracht. Es wurden Verschleißversuche entsprechend des ASTM-Standards G99 durchgeführt. In der Schicht wurden gleichmäßige und gelängte Körner bei den entsprechenden Laserleistungen von 3,5, 4,0, 4,5 and 5,0 kW gefunden. Es wurden außerdem die Druckeigenspannungen auf der Oberfläche der Schichten gemessen und sie nahmen mit zunehmender Laserleistung ab. Nach dem Polieren waren die Druckeigenspannungen und der Verschleißwiderstand der Schichten bei höheren Laserleistungen höher und bei niedrigeren Laserleistungen entsprechend geringer. Der Reibkoeffizient der Schichten, die mit höherer Laserleistung hergestellt wurden, war niedriger als bei niedrigeren Laserleistungen.
References
1 C. T.Sims: Cobalt-base alloys, C. T.Sims, W. C.Hagel (Eds.): The Superalloys, John Wiley & Sons, Inc., New York, USA (1972)Search in Google Scholar
2 J. R.Davis & Associates: ASM Specialty Handbook: Nickel, Cobalt, and their alloys, ASM International, Materials Park, OH, USA (2000)Search in Google Scholar
3 M. J.Donachie, S. J.Donachie: Superalloys: A Technical Guide, 2nd Ed., ASM International, Materials Park, OH, USA (2002)10.31399/asm.tb.stg2.9781627082679Search in Google Scholar
4 B.Geddes, H.Leon, X.Huang: Superalloys: Alloying and Performance, ASM International, Materials Park, OH, USA (2010).10.31399/asm.tb.sap.9781627083133Search in Google Scholar
5 https://www.cobaltinstitute.org/wear-resistant-alloys.html, accessed on May, 3, 2018Search in Google Scholar
6 J.Lawrence, J.Pou, D. K. Y.Low, E.Toyserkani: Advances in laser materials Processing: Technology, Research and Applications, Woodhead Publishing Limited, Abington Hall, Granta Park, Great Abington, Cambridge, UK (2010)Search in Google Scholar
7 http://www.praxairsurfacetechnologies.com/coating-services/application-processes/laser-processing, accessed on May, 3, 2018.Search in Google Scholar
8 http://www.matweb.com/search/datasheet.aspx access on May 7, 2018.Search in Google Scholar
9 S.Kapoor: High-Temperature Hardness and Wear Resistance of Stellite Alloys, MSc Thesis, Faculty of Graduate and Postdoctoral Affairs, Carleton University Ottawa, Ontario, Canada (2012)Search in Google Scholar
10 http://www.calphad.com/cobalt-chromium.html, accessed on May 31, 2018.Search in Google Scholar
11 Katsuji Tosha: Influence of residual stresses on the hardness number in the affected layer produced by shot peening, Proc. of the 2nd Asia Pacific Forum on Precision Surface Finishing and Deburring Technology, Seoul, Korea (2002), pp. 48–54Search in Google Scholar
12 J.Frankel, A.Abbate, W.Scholz: The effect of residual stresses on hardness measurements, Experimental Mechanics, 33 (1993), No. 2, pp. 164–16810.1007/BF02322494Search in Google Scholar
13 H.So, C. T.Chen, Y. A.Chen: Wear behaviours of laser-clad stellite alloy 6, Wear192 (1996), pp. 78–8410.1016/0043-1648(95)06769-8Search in Google Scholar
14 K.Kato: Classification of wear mechanisms/models: W.Gwidon, W.Stachowiak (Eds.): Wear – Materials, Mechanisms and Practice, John Wiley & Sons Ltd, Chichester, UK (2005)Search in Google Scholar
© 2018, Carl Hanser Verlag, München