Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 26, 2018

Determination of the Johnson-Cook damage parameter D4 by Charpy impact testing

Bestimmung des Johnson-Cook Schädigungsparameters mittels Kerbschlagversuchen
Michał Stopel, Dariusz Skibicki and Artur Cichański Bydgoszcz
From the journal Materials Testing


This study proposes to design a road support structure subjected to high-strain-rate loading occurring during vehicle collisions. The strain-rate affects both the hardening process and the material failure process. For modeling the strain-rate influence on material, various mathematical material models are used including the Johnoson-Cook model. The main goal of the study is to presenta method for determining the parameters for the Johnson-Cook damage model, a hybrid method which requires Charpy impact tests on a standard specimen with an annular notch and a series of calculations using finite element method simulating the test. The advantages of the presented method compared to existing methods are the high availability of the equipment, simple and quick processing of results and significantly lower costs.


Die diesem Beitrag zugrunde liegende Studie hatte zum Ziel, einen Weg aufzuzeigen, um Strukturen, die Beanspruchungen durch hohe Dehnraten bei Fahrzeugkollisionen ausgesetzt sind, zu unterstützen. Die Dehnrate beeinflusst beides, den Verfestigungsprozess und den Schädigungsprozess des Werkstoffes. Um den Einfluss der Dehnrate auf den Werkstoff zu modellieren, werden unterschiedliche mathematische Materialmodelle, wie beispielsweise das Johnson-Cook-Modell verwandt. Das Hauptziel der Studie bestand darin, ein Verfahren zu präsentieren, mit dem die Parameter für das Johnson-Cook-Schädigungsmodell bestimmt werden können. Hierbei handelt es sich um ein Hybridverfahren, das Kerbschlagversuche nach Charpy erfordert, und zwar mittels einer Standardprobe mit einem umlaufenden Kerb, sowie eine reihe von Berechnungen mittels der Finite Elemente Methode (FEM). Die Vorteile des hier vorgestellten Verfahrens bestehen in einer hohen Verfügbarkeit der Versuchseinrichtungen, in der einfachen und schnellen Erarbeitung der Ergebnisse und deutlich geringeren Kosten.

*Correspondence Address, Prof. Dr. Dariusz Skibicki, UTP University of Science and, Technology in Bydgoszcz, Kaliskiego 7, 85-796 Bydgoszcz, Poland, E-mail:

MSc Eng. Michał Stopel obtained his basic education in the area of Mechanical Engineering at the University of Science and Technology in Bydgoszcz, Poland in 2013. He started to work on his PhD thesis in the field of Machine Construction. He is particularly interested in dynamic loads and strain-rate dependent materials. He is an assistant at the University of Bydgoszcz in Poland, where he deals mainly with CAD and FEM problems.

Prof. Dr. Eng. Dariusz Skibicki, born in 1967, obtained his basic education in the area of Mechanical Engineering at the University of Science and Technology in Bydgoszcz, Poland in 1992. He started working on materials fatigue in 2000 when defending his PhD thesis. After receiving his doctorate degree, his scope of interest has been enlarged by encompassing materials fatigue and problems of loading nonproportionality. He also deals with the strain-rate influence of load on the strength properties of metals. Presently, he is Asociated Professor at the University of Bydgoszcz in Poland.

Dr. Eng. Artur Cichański, born in 1967, obtained his basic education in the area of Mechanical Engineering at the University of Science and Technology in Bydgoszcz, Poland in 1992. In 2000, he defended his PhD thesis concerning issues of material fatigue. Currently, he is an assistant professor at the University of Bydgoszcz in Poland. His main field of interest is FEM modelling of machine elements and trabecular bone structures.


1 M.Stopel, D.Skibicki: Determination of Johnson-Cook model constants by measurement of strain rate by optical method, AIP Conference Proceedings 1780 (2016), pp. 6000310.1063/1.4965956Search in Google Scholar

2 A.Banerjee, S.Dhar, S.Acharyya, D.Datta, N.Nayak: Determination of Johnson cook material and failure model constants and numerical modelling of Charpy impact test of armour steel, Materials Science and Engineering A640 (2015), pp. 20020910.1016/j.msea.2015.05.073Search in Google Scholar

3 K.Senthil, M. A.Iqbal, N. K.Gupta: Ballistic resistance of mild steel plates of various thicknesses against 762 AP projectiles, International Journal of Protective Structures8 (2017), No. 2, pp. 17719810.1177/2041419617700007Search in Google Scholar

4 R.Kostek, P.Aleksandrowicz: Simulation of car collision with an impact block, IOP Conference Series: Materials Science and Engineering 252 (2017), No. 1 10.1088/1757-899X/252/1/012008Search in Google Scholar

5 R.Kostek, P.Aleksandrowicz: Simulation of the right-angle car collision based on identified parameters, IOP Conference Series: Materials Science and Engineering 252 (2017), No. 1 10.1088/1757-899X/252/1/012013Search in Google Scholar

6 M.Stopel, A.Cichański, D.Skibicki: Modeling of prestressed bolt connection in ls-dyna crash test analysis of road infractructure, V.Fuis (Ed.): Eng. Mech. 2017, Acad Sci Czech Republic, Inst Thermomechanics, Svratka, Czechia (2017) pp. 922925Search in Google Scholar

7 M.Stopel, D.Skibicki, W.Moćko: Verification of FEM Modelling Capabilities Allowing for the Effects of Strain Rate, Solid State Phenomena250 (2016), pp. 20320810.4028/ in Google Scholar

8 G. R.Johnson, W. H.Cook: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, 7th International Symposium on Ballistics (1983), pp. 54154710.1038/nrm3209Search in Google Scholar

9 P.Verleysen, J.Peirs: Quasi-static and high strain rate fracture behaviour of Ti6Al4V, International Journal of Impact Engineering108 (2017), pp. 37038810.1016/j.ijimpeng.2017.03.001Search in Google Scholar

10 Z.Pan, Y.Feng, Y. T.Lu, Y. F.Lin, T. P.Hung, F. C.Hsu, S. Y.Liang: Force modeling of Inconel 718 laser-assisted end milling under recrystallization effects, International Journal of Advanced Manufacturing Technology92 (2017), No. 5–8, pp. 2965297410.1007/s00170-017-0379-xSearch in Google Scholar

11 R.Kiran, K.Khandelwal: A triaxiality and Lode parameter dependent ductile fracture criterion, Engineering Fracture Mechanics128 (2014), No. C, pp. 12113810.1016/j.engfracmech.2014.07.010Search in Google Scholar

12 G. R.Johnson, W. H.Cook: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engineering Fracture Mechanics21 (1985), No. 1, pp. 314810.1016/0013-7944(85)90052-9Search in Google Scholar

13 Y.Zhang, J. C.Outeiro, T.Mabrouki: On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4 V using three types of numerical models of orthogonal cutting, Procedia CIRP31 (2015), pp. 11211710.1016/j.procir.2015.03.052Search in Google Scholar

14 S. V.Laakso, E.Niemi: Using FEM simulations of cutting for evaluating the performance of different johnson cook parameter sets acquired with inverse methods, Robotics and Computer-Integrated Manufacturing47 (2017), pp. 9510110.1016/j.rcim.2016.10.006Search in Google Scholar

15 A.Shrot, M.Bäker: Determination of Johnson–Cook parameters from machining simulations, Computational Materials Science52 (2012), No. 1, pp. 29830410.1016/j.commatsci.2011.07.035Search in Google Scholar

16 M.Stopel, D.Skibicki, W.Moćko: Method for determining the strain rate sensitivity factor for the Johnson-Cook model in Charpy tests, Materials Testing59 (2017), No. 11–12, pp. 96597310.3139/120.111098Search in Google Scholar

17 Y.Bai, X.Teng, T.Wierzbicki: On the application of stress triaxiality formula for plane strain fracture testing, Journal of Engineering Materials and Technology131 (2009), No. 2, pp. 2100210.1115/1.3078390Search in Google Scholar

Published Online: 2018-09-26
Published in Print: 2018-10-27

© 2018, Carl Hanser Verlag, München