Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 18, 2019

Effects of full-scale reel-lay simulation on mechanical properties of X65 grade pipeline girth welds

Auswirkungen der full-scale Simulation der Reel-Lay-Verlegung auf die mechanischen Eigenschaften von Umfangsschweißungen eines Pipelinestahles X 65
Yongdian Han, Song Song, Hongyang Jing, Lei Zhao, Xiaoqing Lv and Lianyong Xu
From the journal Materials Testing

Abstract

The reel-lay method is one of the most effective procedures for installing submarine pipelines. During the reel-lay installation process, pipelines are subjected to large-scale plastic strain because of cyclic bending/straightening processes. Thus, mechanical tests must be carried out to assess the effect of large-scale pre-strain on the girth weld of pipelines after cyclic bending/straightening processes. Tensile tests were performed on weld metals, the results showed that a slight increase in tensile and yield strength were caused by a pre-strain of 2.709 % (maximum strain region). A single-edged notched tension (SENT) specimen was examined via the unloading compliance method to evaluate the fracture toughness for the base metal, weld metal and HAZ. The fracture toughness test results showed that the weld metal exhibited the lowest fracture toughness followed by the base metal and HAZ. The fracture toughness of the base metal, the weld metal and HAZ all decreased after the cyclic bending/straightening with a pre-strain of 2.709 %.

Kurzfassung

Die Reel-Lay-Verlegung ist eine der effektivsten Prozeduren, um Unterwasserpipelines zu installieren. Während des Reel-Lay-Verlegeprozesses werden die Pipelines aufgrund der zyklischen Biege-Streck-Vorgänge einer großen plastischen Dehnung unterworfen. Daher müssen mechanische Tests durchgeführt werden, um die Auswirkung der großen Vordehnung auf die Umfangsschweißungen von Pipelines nach dem zyklischen Biege-Streck-Prozess zu untersuchen. Hierzu wurden Zugversuche mit dem jeweiligen Schweißgut vorgenommen und die Ergebnisse zeigen, dass durch die Vordehnung eine leichte Erhöhung der Zugfestigkeit und der Streckgrenze von 2,709 % eintritt (Bereich der maximalen Dehnung). Einseitig gekerbte Zugproben (Single Edged Notched Tension (SENT) Specimens) zusammen mit dem Verfahren zur Nachgiebigkeit während der Entlastung (Unloading Compliance Method) wurden eingesetzt, um die Bruchzähigkeit für den Grundwerkstoff, das Schweißgut und die Wärmeeinflusszone zu ermitteln. Die Ergebnisse der Bruchzähigkeitsversuche zeigen, dass das Schweißgut die niedrigste Bruchzähigkeit aufwies, gefolgt vom Grundwerkstoff und der Wärmeeinflusszone. Die Bruchzähigkeit des Grundwerkstoffes, des Schweißgutes und der Wärmeinflusszone nahmen alle nach dem zyklischen Biegen und Strecken aufgrund der Vordehnung von 2,709 % ab.


*Correspondence Address, Lianyong Xu, Tianjin Key Laboratory of Advanced Joining Technology, School of Material Science and Engineering, Tianjin University, Tianjin 300072, PR China, E-mail: ,

Assoc. Prof. Dr. Yongdian Han, born in 1983, is Associate Professor at Tianjin University, Tianjin, China. His research focuses on electronic packaging, welding structure and corrosion.

Song Song, born in 1994, is studying for a Master's degree at Tianjin University, Tianjin, China. His research focuses on fatigue properties of metal material.

Prof. Dr. Hongyang Jing, born in 1966, is Professor at Tianjin University, Tianjin, China. His research focuses on welding structure and electronic packaging.

Dr. Lei Zhao, born in 1985, is Lecturer at Tianjin University, Tianjin, China. His research focuses on creep properties of metal material and welding simulation.

Assoc. Prof. Dr. Xiaoqing Lv, born in 1978, is Associate Professor at Tianjin University, Tianjin, China. His research focuses on welding power source and automatic control.

Prof. Dr. Lianyong Xu, born in 1975, is Professor at Tianjin University, Tianjin, China. His research focuses on welding mechanics and creep mechanics.


References

1 S.Kyriakides, E.Corona, S.Kyriakides, E.Corona: Mechanics of Offshore Pipelines, 1th ED., Elsevier, Oxford, UK (2007)Search in Google Scholar

2 S.Manouchehri: A Discussion of Practical Aspects of Reeled Flowline Installation, 31st International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, New York, USA (2012), pp. 531542Search in Google Scholar

3 J. R.Cho, B. D.Joo, R. C.Jin, Y. H.Moon: Finite element analysis of the offshore reel-laying operations for double-walled pipe, Advances in Mechanical Engineering (2017), No. 10, pp. 11010.1177/1687814017731226Search in Google Scholar

4 T.Netto, A.Botto, M.Lourenco: Fatigue performance of pre-strained pipes with girth weld defects: Local deformation mechanisms under bending, International Journal of Fatigue (2008), No. 6, pp. 1080109110.1016/j.ijfatigue.2007.08.001Search in Google Scholar

5 T.Netto, M.Lourenco, A.Botto: Fatigue performance of pre-strained pipes with girth weld defects: Full-scale experiments and analyses, International Journal of Fatigue (2008), No. 5, pp. 76777810.1016/j.ijfatigue.2007.07.002Search in Google Scholar

6 A.Bastola, J.Wang, H.Shitamoto, A.Mirzaee-Sisan, M.Hamada, N.Hisamune: Investigation on the strain capacity of girth welds of X80 seamless pipes with defects, Engineering Fracture Mechanics (2017), pp. 34836510.1016/j.engfracmech.2017.06.010Search in Google Scholar

7 X.Zhu: Review of fracture toughness test methods for ductile materials in low-constraint conditions, International Journal of Pressure Vessels and Piping (2016), pp. 17318310.1016/j.ijpvp.2016.02.006Search in Google Scholar

8 B.Nyhus, M. L.Polanco, O.Orjasæther: SENT Specimens an Alternative to SENB Specimens for Fracture Mechanics Testing of Pipelines, Proc. of the 22nd International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers (2003), pp. 259266Search in Google Scholar

9 S.Cravero, C.Ruggieri: Correlation of fracture behavior in high pressure pipelines with axial flaws using constraint designed test specimens–Part I: Plane-strain analyses, Engineering Fracture Mechanics (2005), No. 9, pp. 1344136010.1016/j.engfracmech.2004.10.010Search in Google Scholar

10 S.Cravero, R. E.Bravo, H.A.Ernst: Constraint evaluation and effects on J-R resistance curves for pipes under combined load conditions, Proc. of the 18th International Offshore and Polar Engineering Conference, The International Journal of Offshore and Polar Engineering, Vancouver, Canada (2008), pp. 308316Search in Google Scholar

11 T. S.Chong, S. B.Kumar, M. O.Lai, W. L.Loh: Effects of wet H2S containing environment on mechanical properties of NACE grade C–Mn steel pipeline girth welds, Engineering Fracture Mechanics (2014), pp. 48550310.1016/j.engfracmech.2014.09.005Search in Google Scholar

12 T.Chong, S. B.Kumar, M. O.Lai, W. L.Loh: Effects of elevated temperatures on the mechanical properties of nickel-based alloy clad pipelines girth welds, Engineering Fracture Mechanics (2016), pp. 17419210.1016/j.engfracmech.2015.11.003Search in Google Scholar

13 E.Fagerholt, E.Østby, T.B⊘rvik, O. S.Hopperstad: Investigation of fracture in small-scale SENT tests of a welded X80 pipeline steel using Digital Image Correlation with node splitting, Engineering Fracture Mechanics (2012), pp. 27629310.1016/j.engfracmech.2012.08.007Search in Google Scholar

14 ASTM E1820-11: Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, PA, USA (2011)Search in Google Scholar

15 DNV-OS-F101: Submarine Pipeline Systems, Det Norske Veritas, Norway (2010)Search in Google Scholar

16 ISO 12135: 12135 Metallic Materials–Unified Method of Test for the Determination of Quasistatic Fracture Toughness, International Standardization Organization ISO, Vernier, Geneva, Switzerland (2007)Search in Google Scholar

17 G.Shen, J. A.Gianetto, W. R.Tyson: Development of Procedure for Low-Constraint Toughness Testing Using a Single-Specimen Technique, CANMET Materials Technology Laboratory, Technical Report (2008), No. 18Search in Google Scholar

18 G.Shen, J. A.Gianetto, W. R.Tyson: Measurement of JR curves using single-specimen technique on clamped SE (T) specimens, Proc. of the 19th International Offshore and Polar Engineering Conference, The International Journal of Offshore and Polar Engineering, Osaka, Japan (2009), pp. 9299Search in Google Scholar

19 H.Shitamoto, N.Hisamune: Effect of full- and small-scale reeling simulation on mechanical properties of weldable 13Cr seamless line pipe, Proc. of the 32nd International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers (2013), pp. V04AT04A052Search in Google Scholar

20 S.Cravero, C.Ruggieri: Estimation procedure of J-resistance curves for SE(T) fracture specimens using unloading compliance, Engineering Fracture Mechanics (2007), No. 17, pp. 2735275710.1016/j.engfracmech.2007.01.012Search in Google Scholar

21 A.Cosham, N.Hagiwara, N.Fukuda, T.Masuda: A model to predict the effect of pre-strain on the fracture toughness of line pipe steel, Proc. of the 4th International Pipeline Conference, American Society of Mechanical Engineers (2002), pp. 19651978Search in Google Scholar

22 N.Hagiwara, T.Masuda, N.Oguchi: Effects of prestrain on fracture toughness and fatigue-crack growth of line pipe steels, Proc. of the International Pipeline Conference 2000, American Society of Mechanical Engineers, New York, USA (2001), pp. 355361Search in Google Scholar

23 M. S.El: Fracture toughness of 20MnMoNi55 steel at different temperatures as affected by room-temperature pre-deformation, Journal of Materials Processing Technology (1995), No. 1, pp. 15916510.1016/0924-0136(95)01936-7Search in Google Scholar

24 P. A.Eikrem, Z. L.Zhang, E.Østby, B.Nyhus: Numerical study on the effect of prestrain history on ductile fracture resistance by using the complete Gurson model, Engineering Fracture Mechanics (2008), No. 15, pp. 4568458210.1016/j.engfracmech.2008.05.006Search in Google Scholar

25 F.Minami, K.Arimochi: Evaluation of prestraining and dynamic loading effects on the fracture toughness of structural steels by the local approach, Journal of Pressure Vessel Technology (2001), No. 3, pp. 36237210.1115/1.1379532Search in Google Scholar

26 M.Paredes, T.Wierzbicki, P.Zelenak: Prediction of crack initiation and propagation in X70 pipeline steels, Engineering Fracture Mechanics (2016), pp. 9211110.1016/j.engfracmech.2016.10.006Search in Google Scholar

27 K. J.Handerhan, W. M.GarrisonJr: A study of crack tip blunting and the influence of blunting behavior on the fracture toughness of ultra high strength steels, Acta Metallurgica Et Materialia (1992), No. 6, pp. 1337135510.1016/0956-7151(92)90435-HSearch in Google Scholar

Published Online: 2019-01-18
Published in Print: 2018-12-04

© 2018, Carl Hanser Verlag, München