Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 18, 2019

Effect of thermal history on the tensile strength of a friction stir welded aluminum alloy

Auswirkungen des Temperaturzyklus' auf die Zugfestigkeit einer rührreibgeschweißten Aluminiumlegierung
Muthunadar Selvaraj, Koteswara Rao, Gurusamy Selvakumar and Vela Murali
From the journal Materials Testing

Abstract

The aim of this work is to study the effect of welding and rotational speed on peak temperature, duration of temperature exposure and their influence on the tensile strength of a friction stir welded aluminum alloy. AA6061-T6 plates 6 mm thick were friction stir welded at various welding and rotational speeds. The temperature during the process was measured. The temperature of the FSW process was predicted using the thermal model and compared with the experimental results. The tensile specimens were prepared from welded plates and tested. The results show that failures occur at the transition between the thermo-mechanically affected zone and the heat affected zone where it possesses minimum hardness. When welding speed increases, peak temperature and the duration of temperature exposure at the failure location decreases and yield and ultimate strength increase. When rotational speed increases, peak temperature and the duration of temperature exposure at the failure location increase and yield and ultimate strength decrease.

Kurzfassung

Das Ziel der diesem Beitrag zugrunde liegenden Forschungsarbeit besteht darin, die Auswirkung der Schweiß- und Rotationsgeschwindigkeit auf die Spitzentemperatur, auf die dauer der Temperaturexposition und deren Einfluss auf die Zugfestigkeit einer rührreibgeschweißten Aluminiumlegierung zu untersuchen. Hierzu wurden 6 mm dicke Bleche der Aluminiumlegierung AA6061-T6 mit verschiedenen Schweißgeschwindigkeiten von 300 bis 1800 mm × min−1 und Rotationsgeschwindigkeiten von 300 bis 1800 U × min−1 rührreibgeschweißt. Die Temperaturen während des Prozesses wurden gemessen. Die Temperatur während des Rührreibschweißprozesses wurde außerdem vorhergesagt, indem ein Modell verwandt wurde, und mit den experimentellen Ergebnissen verglichen. Die Zugproben wurden aus den geschweißten Platten entnommen und ebenfalls geprüft. Die Ergebnisse zeigen, dass das Versagen der Proben am Übergang zwischen der thermo-mechanisch beeinflussten Zone und der Wärmeeinflusszone stattfindet, wo eine minimale Härte vorliegt. Wenn die Schweißgeschwindigkeit zunimmt, nehmen die Spitzentemperatur sowie die Dauer der Temperaturexposition am Ort des Versagens zu, und die Dehngrenze sowie die Zugfestigkeit nehmen ab.


*Correspondence Address, Dr. M. Selvaraj, Department of Mechanical Engineering, SSN College of Engineering, Chennai, 603 110, India, E-mail: ,

Dr. Muthunadar Selvaraj, born in 1971, received his PhD in Mechanical Engineering from Anna University, Chennai, India in 2014. He has around 21 years of professional experience in teaching and research. Currently, he is working as Associate Professor of Mechanical Engineering at SSN College of Engineering, Chennai, India.

Dr Koteswara Rao, received his PhD in Engineering from Indian Institute of Technology Madras, Chennai in 2003. He has around 20 years of professional experience in teaching and research. Currently, he is working as Professor in Mechanical Engineering at SSN College of Engineering, Chennai, India.

Dr. Gurusamy Selvakumar, born in 1978, received his PhD in Engineering from Jadavpur University, Kolkata, India in 2013. He has around 15 years of professional experience in teaching and research. Currently, he is working as Associate Professor in Mechanical Engineering Department of SSN College of Engineering, Chennai, India.

Dr Vela Murali, received his PhD in Engineering from National University of Singapore, Singapore in 2003. He has around 25 years of professional experience in teaching and research. Currently, he is working as Professor in the Engineering Design Division of Anna University, Chennai, India.


References

1 W.Woo, H.Choo, P. J.Withers, Z.Feng: Prediction of hardness minimum locations during natural aging in an aluminum alloy 6061-T6 friction stir weld, Journal of Materials Science44 (2009), pp. 6302630910.1007/s10853-009-3868-ySearch in Google Scholar

2 Y. J.Chao, W.Tang: Heat transfer in friction stir welding – Experimental and numerical studies, Transactions of the ASME125 (2003), pp. 13814510.1115/1.1537741Search in Google Scholar

3 P.Prasanna, B. S.Rao, G. K.Mohana Rao: Finite element modeling for maximum temperature in friction stir welding and its validation, International Journal of Advanced Manufacturing Technology51 (2010), pp. 92593310.1007/s00170-010-2693-4Search in Google Scholar

4 C.Hamilton, S.Dymek, A.Sommers: A thermal model of friction stir welding in aluminum alloys, International Journal of Machine Tools & Manufacture48 (2008), pp. 1120113010.1016/j.ijmachtools.2008.02.001Search in Google Scholar

5 C.Hamilton, A.Sommers, S.Dymek: A thermal model of friction stir welding applied to Sc-modified Al–Zn–Mg–Cu alloy extrusions, International Journal of Machine Tools & Manufacture49 (2009), pp. 23023810.1016/j.ijmachtools.2008.11.004Search in Google Scholar

6 S. A.Emam, A.EDomiaty: A refined energy-based model for friction-stir welding, World Academy of Science, Engineering and Technology53 (2009), pp. 1016102210.1.1.308.4275Search in Google Scholar

7 L.Liu, M.Fujii, K.Meada, K.Nogi: Tensile properties and fracture locations of friction stir welded joints of 6061–T6 aluminium alloy, Journal of Materials Science Letter22 (2003), pp. 1061106310.1023/A:1024970421082Search in Google Scholar

8 S.Lim, S.Kim, C.Lee, S.Kim: Tensile behavior of friction-stir-welded Al 6061-T651, Metallurgical and Materials Transactions A35 (2004), pp. 2829283510.1007/s11661-004-0230-5Search in Google Scholar

9 H.Fujii, L.Cui, M.Maeda, K.Nogi: Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys, Materials Science and Engineering A419 (2006), pp. 253110.1016/j.msea.2005.11.045Search in Google Scholar

10 S. R.Ren, Z. Y.Ma, L. Q.Chen,: Effect of welding parameters on tensile properties and fracture behavior of friction stir welded Al-Mg-Si alloy, Scripta Materialia56 (2007), pp. 697210.1016/j.scriptamat.2006.08.054Search in Google Scholar

11 N. T.Kumbhar, K.Bhanumurthy, M. S.Division, B.Atomic: Friction stir welding of Al 6061 alloy, Asian Journal of Experimental Sciences22 (2008), pp. 637410.1016/j.msea.2005.11.045Search in Google Scholar

12 M.Esmailzadeh, M.Shamanianan, A.Kermanpura, T.Saeid: Microstructure and mechanical properties of friction stir welded lean duplex stainless steel, Materials Science and Engineering A561 (2013), pp. 48649110.1016/j.msea.2012.10.068Search in Google Scholar

13 N.Rajamanickam, V.Balusamy, G. M.Reddy, K.Natarajan: Effect of process parameter on thermal history and mechanical properties of friction stir welds, Materials and Design30 (2009), pp. 2726273110.1016/j.matdes.2008.09.035Search in Google Scholar

14 W.Xu, J.Liu, G.Luan, C.Dong: Temperature evolution, microstructure and mechanical properties of friction stir welded thick 2210-O aluminium alloy joints, Materials and Design30 (2009), pp. 18861893http://www.jwri.osaka-u.ac.jp/~dpt9/BMG-Cu.pdfSearch in Google Scholar

15 L.Wei, T. W.Nelson: Influence of heat input on post weld microstructure and mechanical properties of friction stir welded HSLA-65 steel, Material Science and Engineering A556 (2012), pp. 515910.1016/j.msea.2012.06.057Search in Google Scholar

16 P.Biswas, D. A.Kumar, N. R.Mandal: Friction stir welding of aluminum alloy with varying tool geometry and process parameters, Proceedings of the Institute of Mechanical Engineers, Part B: Journal of Engineering Manufacture226 (2012), pp. 64164810.1177/0954405411424111Search in Google Scholar

17 S.Senthilkumar, S.Narayanan, A. S.Denis: Acoustic emission–based monitoring approach for friction stir welding of aluminum alloy AA6063-T6 with different tool pin profiles, Proceedings of the Institute of Mechanical Engineers, Part B: Journal of Engineering Manufacture227 (2014), No. 3, pp. 40941610.1177/0954405412472673Search in Google Scholar

18 M.Selvaraj, VelaMurali, S. R. K.Rao: Thermal model for friction stir welding of mild steel, Multidiscipline Modeling in Materials and Structures9 (2013), pp. 496110.1108/15736101311329151Search in Google Scholar

19 H.SchmidtJ.HattelJ.Wert: An analytical model for heat generation in friction stir welding, Modelling and simulation in Materials Science and Engineering12 (2004), pp. 14315710.1088/0965-0393/12/1/013Search in Google Scholar

20 V.Soundararajan, S.Zekovic, R.Kovacevic: Thermomechanical model with adaptive boundary conditions for friction stir welding of Al 6061, International Journal of Machine Tools and Manufacture45 (2005), pp. 1577158710.1016/j.ijmachtools.2005.02.008Search in Google Scholar

21 M.Riahi, H.Nazari: Analysis of transient temperature and residual thermal stress in friction stir welding of aluminum alloy 6061-T6 via numerical simulation, International Journal of Advanced Manufacturing Technology55(2010), pp. 14315210.1007/s00170-010-3038-zSearch in Google Scholar

22 T.Dickerson, Q.Shi, H. R.Shercliff: Heat flow into friction stir welding tools, Proc. of the 4th International Symposium on Friction Stir Welding, Park City Utah (2003), pp. 8996http://www-materials.eng.cam.ac.uk/FSW_Benchmark/references/Heat%20Flow%20Into%20a%20FSW%20Tool.pdfSearch in Google Scholar

23 Z.ChenT.PasangY.Qi: Shear flow and formation of Nugget zone during friction stir welding of aluminium alloy 5083-O, Materials Science and Engineering A474 (2008), pp. 31231610.1016/j.msea.2007.05.074Search in Google Scholar

24 N.Rajamanickam, V.Balusamy, G. MadhusudhannaReddy, K.Natarajan: Effect of process parameters on thermal history and mechanical properties of friction stir welds, Materials and Design30 (2009), pp. 2726273110.1016/j.matdes.2008.09.035Search in Google Scholar

Published Online: 2019-01-18
Published in Print: 2018-12-04

© 2018, Carl Hanser Verlag, München