Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 18, 2019

Effect of coating on tool inserts and cutting fluid flow rate on the machining performance of AISI 1015 steel

Auswirkungen der Beschichtung des Werkzeugeinsatzes und der Schneidflüssigkeits-Zufuhrrate auf das Verhalten eines Stahles AISI 1015 bei der maschinellen Bearbeitung
Chinnasamy Moganapriya, Rathanasamy Rajasekar, Kannayiram Ponappa, Palaniappan Sathish Kumar, Samir Kumar Pal and Jaganathan Saravana Kumar
From the journal Materials Testing

Abstract

The effect of cutting parameters, such as depth of cut, feed rate, spindle speed, cutting fluid flow rate and the number of layers deposited on the surface roughness and flank wear of a cathodic arc evaporation coated TiAlN/WC-C tungsten carbide cutting tool insert was investigated during CNC turning of AISI 1015 mild steel. The analysis of variance was applied to determine the critical effect of the cutting parameters. Taguchi orthogonal test design was used to optimize the process parameters. The depth of cut and deposition of layers altered the surface roughness (49 and 32 %, respectively) of the inserts. However, cutting speed, feed rate and the flow rate of the cutting fluid contributed only minimally to the surface roughness. In contrast, the number of layers deposited (48.66 %) and cutting speed (30.93 %) were the dominant factors affecting tool wear. The optimum cutting conditions for achieving the desired surface roughness consist of a medium level of cutting speed, a low depth of cut level, a low feed rate, high flow rate of cutting fluid and multilayer deposition. Minimal tool wear was achieved for the process parameters such as low cutting speed, low depth of cut, medium feed rate, medium flow rate of cutting fluid, and a multilayer deposited tool.

Kurzfassung

Die Auswirkungen der Schneidparameter, wie der Schnitttiefe, der Vorschubrate, der Spindelgeschwindigkeit, der Durchflussrate des Schneidmittels und der Anzahl der Lagen auf die Oberflächenrauheit und den Flankenverschleiß von Wolframkarbid-Schneideinsätzen, die mittels Lichtbogenverdampfens mit TiAlN/WC-C beschichtet wurden, wurden während des CNC-Drehens eines Kohlenstoffstahles des Typs AISI 1015 untersucht. Um kritische Auswirkungen der Schneidparameter zu bestimmen, wurde eine Varianzanalyse angewandt. Um die Prozessparameter zu optimieren kam das orthogonale Taguchi-Verfahren zum Einsatz. Die Schnitttiefe und die Zahl der Lagen veränderten die Oberflächenrauheit (um entsprechend 49 und 32 %). Allerdings wiesen die Schnittgeschwindigkeit, die Vorschubrate und die Durchflussrate des Schneidmittels nur eine minimale Auswirkung auf die Oberflächenrauheit auf. Im Gegensatz waren die Zahl der Lagen (48,66 %) und die Schnittgeschwindigkeit (30,93 %) die dominanten Faktoren, die den Werkzeugverschleiß beeinflussen. Die optimalen Schnittbedingungen, um die erforderliche Oberflächenrauheit zu erbringen, liegen bei einem mittleren Niveau der Schnittgeschwindigkeit, einem niedrigen Niveau der Schnitttiefe, einem niedrigen Niveau der Vorschubrate, einer hohen Durchflussrate des Schneidmittels und einer Viellagentechnik der Werkzeugbeschichtung. Ein minimaler Werkzeugverschleiß wurde für die entsprechenden Prozessparameter erreicht, wie eine niedrige Schnittgeschwindigkeit, eine geringe Schnitttiefe, eine mittlere Vorschubrate, eine mittlere Durchflussrate des Schneidmittels und einer Viellagentechnik der Werkzeugbeschichtung.


*Correspondence Address, Prof. Dr. Rathanasamy Rajasekar, Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode, Tamil Nadu, India, E-mail:

Chinnasamy Moganapriya, born 1988, completed her Bachelor of Mechatronics Engineering at Kongu Engineering College, Tamil Nadu, India in 2009. She obtained her Master's degree in Engineering Design at the same university in 2013. Since 2013, she has been working as an Assistant Professor in the Department of Mechanical Engineering at Kongu Engineering College, Erode, India.

Prof. Dr. Rathanasamy Rajasekar, born 1982, obtained his MSc and PhD degrees in 2008 and 2011, respectively, at the Indian Institute of Technology, Kharagpur in Materials Science. He gained Post-Doctoral Research experience in 2011–2012 in the Department of Polymer & Nano Engineering at Chonbuk National University, South Korea. Since 2012, he has been working as Professor in the Department of Mechanical Engineering at Kongu Engineering College, Erode, India.

Dr. Kannayiram Ponappa, born 1979, obtained his MEng degree (Manufacturing) from Annamalai University in 2005. He obtained his PhD degree in 2013 at the Indian Institute of Technology, Delhi in Manufacturing. Since 2013, he has been working as an Associate Professor in the Department of Mechanical Engineering at Kongu Engineering College, Erode, India.

Palaniappan Sathish Kumar, born in 1991, finished his BEng degree in Mechanical Engineering at the University College of Engineering Villupuram (A Constituent College of Anna University, Chennai), Tamil Nadu, India in 2012. He received his MEng from Kongu Engineering College, Tamil Nadu, India, in 2014 with distinction in CAD/CAM. Currently, he is pursuing a Ph.D. in the Department of Mining Engineering, Indian Institute of Technology (IIT) Kharagpur, West Bengal, India.

Prof. Dr. Samir Kumar Pal completed his BTech, MTech and his Ph.D. in the Department of Mining Engineering, Indian Institute of Technology, Kharagpur, West Bengal. Since 1981, he has been working as a member of the faculty in the Department of Mining Engineering, Indian Institute of Technology in Kharagpur, India.

Jaganathan Saravana Kumar completed his PhD at the Indian Institute of Technology, Kharagpur and is currently working as Senior Lecturer in IJN-UTM Cardiovascular Research Center, Universiti Teknologi Malaysia in Johor. His area of interest lies in the broad field of biomaterials. He is interested in developing nano materials for several medical applications particularly in the field of cardiovascular biomaterials. In addition, he focuses on other applications of nano composite materials for environmental engineering and energy applications.


References

1 J.Dureja, R.Singh, M. S.Bhatti: Optimizing flank wear and surface roughness during hard turning of AISI D3 steel by taguchi and RSM methods, Production and Manufacturng Research2 (2014), No. 1, pp. 76778310.1080/21693277.2014.955216Search in Google Scholar

2 N.Mandal: Optimization of flank wear using Zirconia Toughened Alumina (ZTA) cutting tool: Taguchi method and Regression analysis, Measurement44 (2011), No. 10, pp. 2149215510.1016/j.measurement.2011.07.022Search in Google Scholar

3 S. S.Gill: Investigation on wear behaviour of cryogenically treated TiAlN coated tungsten carbide inserts in turning, International Journal of Machine tools and Manufacture51 (2011), No. 1, pp. 253310.1016/j.ijmachtools.2010.10.003Search in Google Scholar

4 E. O.Ezugwu, K.Soh: Wear of coated carbide tools when machining a Ni-Cr-Mo (817M40) steel, Tribology and Lubricant Technology53 (1997), No. 11, pp. 1824Search in Google Scholar

5 R.Yigit: Tool life performance of multilayer hard coatings produced by HTCVD for machining of nodular cast iron, International Journal of Refractory Metals and Hard Materials26 (2008), No. 6, pp. 51452410.1016/j.ijrmhm.2007.12.003Search in Google Scholar

6 P.Jindal: Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning, International Journal of Refractory Metals and Hard Materials17 (1999), No. 1, pp. 16317010.1016/S0263-4368(99)00008-6Search in Google Scholar

7 C. J.Rao, D.Sreeamulu, A. T.Mathew: Analysis of tool life during turning operation by determining optimal process parameters, Procedia Engineering97 (2014), No. 41, pp. 24125010.1016/j.proeng.2014.12.247Search in Google Scholar

8 T.Tamizharasan, T.Selvaraj, A. NoorulHaq: Analysis of tool wear and surface finish in hard turning, International Journal of Advanced Manufacturing Technology28 (2006), No. 7, pp. 67167910.1007/s00170-004-2411-1Search in Google Scholar

9 A.Bendell, J.Disney, W. A.Pridmore: Taguchi Methods: Applicatons in World Industry. IFS Publications, UK, 1989, http://ieeexplore.ieee.org/document/4910491/Search in Google Scholar

10 D.Fratila, C.Caizar: Application of Taguchi method to selection of optimal lubrication and cutting conditions in face milling of AlMg3, Journal of Cleaner Production19 (2011), No. 6–7, pp. 64064510.1016/j.jclepro.2010.12.007Search in Google Scholar

11 A. K.Sahoo, S.Pradhan, A. K.Rout: Development and machinability assessment in turning Al/SiC p-metal matrix composite with multilayer coated carbide insert using Taguchi and statistical techniques, Archives of Civil and Mechanical Engineering13 (2013), No. 1, pp. 273510.1016/j.acme.2012.11.005Search in Google Scholar

12 M.Attanasio, C.Gelfi, C.Giardini, C.Remino: Minimal quantity lubrication in turning: Effect on tool wear, Wear260 (2006), pp. 33333810.1016/j.wear.2005.04.024Search in Google Scholar

13 S.Debnath, M. M.Reddy, Q. S.Yi: Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method, Measurement78 (2016), pp. 11111910.1016/j.measurement.2015.09.011Search in Google Scholar

14 J. P.Davim: A note on the determination of optimal cutting conditions for surface finish obtained in turning using design of experiments, Journal of Materials Processing Technology116 (2001), No. 2, pp. 30530810.1016/S0924-0136(01)01063-9Search in Google Scholar

15 R.Suresh, S.Basavarajappa, G.Samuel: Some studies on hard turning of AISI 4340 steel using multilayer coated carbide tool, Measurement45 (2012), No. 7, pp. 1872188410.1016/j.measurement.2012.03.024Search in Google Scholar

16 D. P.Selvaraj, P.Chandramohan: Optimization of surface roughness of AISI 304 austenitic stainless steel in dry turning operation using Taguchi design method, Journal of Engineering Science and Technology5 (2010), No. 3, pp. 293301Search in Google Scholar

17 J.Madison: CNC Machining Handbook: Basic Theory, Production Data, and Machining Procedures, Industrial Press, South Norwalk, CT, USA (1996)Search in Google Scholar

18 V. N.Gaitonde, S. R.Karnik, J. P.Davim: Selection of optimal MQL and cutting conditions for enhancing machinability in turning of brass, Journal of Materials Processing Technology204 (2008), pp. 45946410.1016/j.jmatprotec.2007.11.193Search in Google Scholar

19 W. H.Yang, Y. S.Tang: Design optimization of cutting parameters for turning operations based on the Taguchi method, Journal of Materials Processing Technology84 (1998), No. 1, pp. 12212910.1016/S0924-0136(98)00079-XSearch in Google Scholar

20 D.Fratila: Evaluation of near-dry machining effects on gear milling process efficiency, Journal of Cleaner Production17 (2009), No. 9, pp. 83984510.1016/j.jclepro.2008.12.010Search in Google Scholar

21 M.Thomas, Y.Beauchamp: Statistical investigation of modal parameters of cutting tools in dry turning, International Journal of Machine tools and Manufacture43 (2003), No. 11, pp. 1093110610.1016/S0890-6955(03)00131-7Search in Google Scholar

22 S. K.Sikdar, M.Chen: Relationship between tool flank wear area and component forces in single point turning, Journal of Materials Processing Technology128 (2002), No. 1, pp. 21021510.1016/S0924-0136(02)00453-3Search in Google Scholar

23 H.Zhao, G. C.Barber, Q.Zou: A study of flank wear in orthogonal cutting with internal cooling, Wear253 (2002), No. 9, pp. 95796210.1016/S0043-1648(02)00248-XSearch in Google Scholar

Published Online: 2019-01-18
Published in Print: 2018-12-04

© 2018, Carl Hanser Verlag, München