Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 18, 2019

Performance of a salt-resistant mixture of bentonite and field soil as impermeable material in solid waste landfills

Verhalten eines salzresistenten Gemisches aus Bentonit und Erdreich aus nichtdurchlässigem Material in Festabfalldeponien
  • Xin Xu , Xiaofeng Liu , Shahabaldin Rezania , Myounghak Oh , Junboum Park and Y. Frank Chen
From the journal Materials Testing

Abstract

Leachate in landfill contains a great number of toxic and harmful substances and results in long-term contamination of the underground environment once it leaks. Therefore, constructing an impermeable layer at the bottom of sanitary landfills is the key to preventing the contamination induced by leachate leakage. Bentonite is an impervious liner material that is currently widely used in landfills. However, the performance of bentonite as an impervious material is likely to be greatly affected when leachate contains a high salt content. By modifying additives using bentonite, a salt-resistant bentonite can be acquired which satisfies the impermeability requirement imposed by a saline environment. Additionally, by carrying out various tests (including a free swell index test, compaction, hydraulic conductivity, heavy metal adsorption, and direct shear tests), the performance of developed bentonite and the mixture of weathered soil and modified bentonite were verified. The swelling capacity of salt-resistant bentonite in saline water was nearly equal to that in a fresh water environment. After salt-resistant bentonite was mixed with weathered soil in a proportion of 1 : 9, the hydraulic conductivity of the mixture in saline water was less than 1 × 10−7 cm × s−1, satisfying the basic requirement for use as a landfill liner material. Moreover, the relationship between the shear strength or the cracks in the liner soil and the initial moisture content of the mixed soil can be obtained by conducting direct shear and drying shrinkage tests on the mixture of weathered soil and modified bentonite. The results are expected to provide data support for the design of engineering construction works in a geo-environmental context.

Kurzfassung

Das Sickerwasser in Mülldeponien enthält eine große Anzahl von toxischen und gefährlichen Stoffen und führt zu einer Langzeitkonaminierung des Untergrundes, wenn es durchsickert. Daher ist die Konstruktion einer nichtdurchlässigen Schicht am Fuß von geordneten Mülldeponien ein Schlüssel, um die Kontamination durch Sickerwasser zu vermeiden. Bentonit ist ein abweisendes Auskleidungsmaterial, das momentan breitflächig für Abfalldeponien verwandt wird. Allerdings ist das Verhalten von Bentonit als abweisendes Material stark beeinflusst, wenn das Sickerwasser einen hohen Salzgehalt aufweist. Indem der Bentonit mittels Additiven modifiziert wird, kann ein salzresistenter Bentonit entwickelt werden, der die Erfordernisse bezüglich Undurchlässigkeit bei salinen Umgebungen erfüllt. Zusätzlich wurden für den vorliegenden Beitrag durch die Durchführung verschiedener Tests (einschließlich Tests des freien Schwellindexes, der Kompaktierung, der hydraulischen Leitfähigkeit, der Schwermetallabsorption und direkter Scherversuche) das Verhalten des entwickelten Bentonits und dem Gemisch aus Erdreich und modifiziertem Bentonit verifiziert. Die Schwellkapazität des salzresistenten Bentonits unter Salzwasserbedingungen war etwa gleich zu dem in einer Frischwasserumgebung. Nachdem der salzresistente Bentonit mit Erdreich im Verhältnis 1 : 9 gemischt wurde, war die hydraulische Leitfähigkeit des Gemisches unter Salzwasserbedingungen niedriger als 1 × 10−7 cm und erfüllte das Grunderfordernis für die Verwendung als Dichtmaterial für Abfalldeponien. Darüber hinaus konnte das Verhältnis zwischen der Scherfestigkeit oder Rissen in der Dichterde und dem anfänglichen Feuchtigkeitsgehalt der gemischten Erde durch direkte Scherversuche und Trockenschrumpfungsversuche mit dem Gemisch aus verwitterter Erde und dem modifizierten Bentonit ermittelt werden. Von den Ergebnissen ist zu erwarten, dass sie unterstützende Daten für die Auslegung von Ingenieurbauwerken im geo-umweltrelevanten Zusammenhang liefern.


*Correspondence Address, Prof. Dr. Junboum Park, Department of Civil and Environmental Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
** Prof. Dr. Y. Frank Chen Department of Civil Engineering, The Pennsylvania State University, 777 W Harrisburg Pike, Middletown, PA 17057, USA. E-mail: , , , , ,

Xin Xu, born in 1987, is a PhD candidate at the Department of Civil and Environmental Engineering at Seoul National University, South Korea. His study focuses on geo-technical and geo-environmental engineering.

Xiaofeng Liu, born in 1989, is a PhD candidate at the Department of Architecture and Civil Engineering at Taiyuan University of technology, Taiyuan, China. His study focuses on geo-technical and geo-environmental engineering.

Shahabaldin Rezania, born in 1983, is a Postdoctoral Researcher at the Department of Civil and Environmental Engineering at Seoul National University, South Korea. He obtained his PhD from the University Teknologi Malaysia in the field of environmental engineering in 2016. His main research area is pollution removal from wastewater, soil and air using different materials and approaches.

Myounghak Oh, born in 1975, is Principal Researcher at the Korea Institute of Ocean Science & Technology. Busan, South Korea. He obtained his PhD degree from Seoul National University, Korea in 2005. He specializes in geo-environmental engineering and offshore geo-technical engineering.

Prof. Dr. Junboum Park, born in 1962, is Professor at Seoul National University, S. Korea. He obtained his PhD degree from the University of Houston, USA in 1994. His main research area is permeable reactive barrier, leakage detection systems, sorption material development and some other related areas in geo-environmental engineering.

Prof. Dr. Y. Frank Chen, born in 1956, is currently Tenured Professor at Pennsylvania State University, Middletown, USA. He obtained his PhD degree from the University of Minnesota, Minneapolis, USA in 1988. He specializes in dynamic soil-structure interaction, computational methods, bridge engineering, foundations, dynamic-load resistant designs, geo-environmental engineering, and construction materials.


References

1 S.Renou, J. G.Givaudan, S.Poulain, F.Dirassouyan, P.Moulin: Landfill leachate treatment: Review and opportunity, Journal of Hazardous Materials150 (2008), No. 3, pp. 46849310.1016/j.jhazmat.2007.09.077Search in Google Scholar PubMed

2 E. A.Sabahi, S. A.Rahim, W. Y. W.Zuhairi, F.Alnozaily, F.Alshaebi: The characteristics of leachate and groundwater pollution at municipal solid waste landfill of ibb city, yemen, American Journal of Environmental Sciences5 (2009), No. 3, pp. 256266fulltext/ajes/ajes53256-266Search in Google Scholar

3 A. H.Ören, R.Ç.Akar: Swelling and hydraulic conductivity of bentonites permeated with landfill leachates, Applied Clay Science142 (2017), No. 15, pp. 818910.1016/j.clay.2016.09.029Search in Google Scholar

4 H.Komine: Simplified evaluation for swelling characteristics of bentonites, Engineering Geology71 (2004), No. 3, pp. 265279, 10.1016/S0013-7952(03)00140-6Search in Google Scholar

5 Z. R.Liu, S. Q.Zhou: Adsorption of copper and nickel on Na-bentonite, Process Safety & Environmental Protection88 (2010), No. 1, pp. 6266, 10.1016/j.psep.2009.09.001Search in Google Scholar

6 T. K.Sen, K.Chi: Adsorption characteristics of zinc (Zn2+) from aqueous solution by natural bentonite and kaolin clay minerals: a comparative study, Computational Water Energy & Environmental Engineering2 (2013), No. 3B, pp. 16, 10.4236/cweee.2013.23B001Search in Google Scholar

7 M.Onikata, M.Nondo, N.Hayashi, S.Yamanaka: Complex formation of cation-exchanged montmorillonites with propylene carbonate: Osmotic swelling in aqueous electrolyte solutions, Clays & Clay Minerals47 (1999), No. 5, pp. 67267710.1.1.587.2681Search in Google Scholar

8 P. V.Sivapullaiah, A.Sridharan, V. K.Stalin: Hydraulic conductivity of bentonite-sand mixtures, Canadian Geotechnical Journal37(2000), No. 2, pp. 406413, 10.1139/t99-120Search in Google Scholar

9 S.Puma, A.Dominijanni, M.Manassero, L.Zaninetta: The role of physical pretreatments on the hydraulic conductivity of natural sodium bentonites, Geotextiles & Geomembranes43 (2015), No. 3, pp. 263271, 10.1016/j.geotexmem.2015.02.001Search in Google Scholar

10 F. M.Francisca, D. A.Glatstein: Long term hydraulic conductivity of compacted soils permeated with landfill leachate. Applied Clay Science49(2010), No. 3, pp. 18719310.1016/j.clay.2010.05.003Search in Google Scholar

11 Shankara, M.Naik, P. V.Sivapullaiah: Studies on use of sand-bentonite and sand-fly ash mixtures as prospective liner materials to retain iron and copper in aqueous solutions, Anales Del Sistema Sanitario De Navarra38 (2012), No. 1, pp. 15116210.5296/emsd.v1i2.2301Search in Google Scholar

12 A.Firoozfar, N.Khosroshiri: Kerman clay improvement by lime and bentonite to be used as materials of landfill liner, Geotechnical & Geological Engineering35 (2017), No. 1, pp. 55957110.1007/s10706-016-0125-4Search in Google Scholar

13 C. H.Benson, A. H.Ören, W. P.Gates: Hydraulic conductivity of two geosynthetic clay liners permeated with a hyperalkaline solution, Geotextiles & Geomembranes28 (2010), No. 2 pp. 206218, 10.1016/j.geotexmem.2009.10.002Search in Google Scholar

14 H. S.Ahn, H. Y.Jo: Influence of exchangeable cations on hydraulic conductivity of compacted bentonite, Applied Clay Science44 (2009), No. 1–2, pp. 144150, 10.1016/j.clay.2008.12.018Search in Google Scholar

15 H. Y.Jo, C. H.Benson, C. D.Shackelford, J. M.Lee, T. B.Edil: Long-term hydraulic conductivity of a geosynthetic clay liner permeated with inorganic salt solutions, Journal of Geotechnical & Geoenvironmental Engineering131 (2005), No. 4, pp. 40541710.1061/(ASCE)1090-0241(2005)131:4(405)Search in Google Scholar

16 ASTM D854-14: Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, American Society for Testing and Materials International, West Conshohocken, Pennsylvania, USA (2014) 10.1520/D0854-14Search in Google Scholar

17 ASTM D4318-17: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, American Society for Testing and Materials International, West Conshohocken, Pennsylvania, USA (2017) 10.1520/D4318-17E01Search in Google Scholar

18 M. A.Al-Ghouti, M. A. M.Khraisheh, M. N. M.Ahmad, S.Allen: Adsorption behaviour of methylene blue onto jordanian diatomite: A kinetic study, Journal of Hazardous Materials165 (2009), No. 1.3, pp. 589598, 10.1016/j.jhazmat.2008.10.018Search in Google Scholar PubMed

19 N.Caner, A.Sari, M.Tuzen: Adsorption characteristics of mercury (ii) ions from aqueous solution onto chitosan-coated diatomite, Industrial & Engineering Chemistry Research54 (2015), No. 30, pp. 7524753310.1021/acs.iecr.5b01293Search in Google Scholar

20 A. K.Ashmawy, D.El-Hajji, N.Sotelo, N.Muhammad: Hydraulic performance of untreated and polymer-treated bentonite in inorganic landfill leachates, Clays & Clay Minerals50 (2002), No. 5, pp. 54655210.1346/000986002320679288Search in Google Scholar

21 G. D.Emidio, F.Mazzieri, R. D.Verastegui-Flores, W. V.Impe, A.Bezuijen: Polymer-treated bentonite clay for chemical-resistant geosynthetic clay liners, Geosynthetics International22 (2015), No. 1, pp. 12513710.1680/gein.14.00036Search in Google Scholar

22 ASTM D 5890-11: Standard Test Method for Swell Index of Clay Mineral Component of Geosynthetic Clay Liners, American Society for Testing and Materials International, West Conshohocken, Pennsylvania, USA (2011), 10.1520/D5890-18Search in Google Scholar

23 ASTM D 1557-07: Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort, American Society for Testing and Materials International, West Conshohocken, Pennsylvania, USA (2007), 10.1520/D1557-07Search in Google Scholar

24 ASTM D5856-15: Standard Test Method for Measurement of Hydraulic Conductivity of Porous Material Using a Rigid-Wall, Compaction-Mold Permeameter, American Society for Testing and Materials International, West Conshohocken, Pennsylvania, USA (2015) 10.1520/D5856-15Search in Google Scholar

25 ASTM D 3080-11: Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, American Society for Testing and Materials International, West Conshohocken, Pennsylvania, USA (2011), 10.1520/D3080_D3080M-11Search in Google Scholar

26 Y. Y.Tay, D. I.Stewart, T. W.Cousens: Shrinkage and desiccation cracking in bentonite-sand landfill liners, Engineering Geology60 (2001), No. 1, pp. 26327410.1016/S0013-7952(00)00107-1Search in Google Scholar

27 C. S.Tang, B.Shi, C.Liu, W. B.Suo, L.Gao: (2011). Experimental characterization of shrinkage and desiccation cracking in thin clay layer. Applied Clay Science, 52 (2011), No. (1–2), pp. 6977, 10.1016/j.clay.2011.01.032Search in Google Scholar

28 N. F.Zhao, W. M.Ye, Y. G.Chen, B.Chen, Y. J.Cui: Investigation on swelling-shrinkage behavior of unsaturated compacted gmz bentonite on wetting-drying cycles, Bulletin of Engineering Geology & the Environment1 (2017), No. 11, pp. 11110.1007/s10064-017-1095-3Search in Google Scholar

29 D.Kim, K.Kim: An engineering characteristics of weathered granite soil-bentonite mixtures, Journal of the Korean Geoenvironmental Society7 (2006), No. 6, pp. 4556(in Korean) G704-SER000001652.2006.7.6.005Search in Google Scholar

30 A. K.Mishra, M.Ohtsubo, L. Y.Li, T.Higashi: Influence of the bentonite on the consolidation behaviour of soil–bentonite mixtures, Carbonates & Evaporites25 (2010), No. 1, pp. 434910.1007/s13146-010-0006-5Search in Google Scholar

31 A. R.Kul, H.Koyuncu: Adsorption of Pb (II) ions from aqueous solution by native and activated bentonite: kinetic, equilibrium and thermodynamic study. Journal of Hazardous Materials179 (2010), No. 1–3, pp. 332339, 10.1016/j.jhazmat.2010.03.009Search in Google Scholar PubMed

32 T. W.Tzu, T.Tsuritani, K.Sato: Sorption of Pb(II), Cd(II), and Ni(II) toxic metal ions by alginate-bentonite, Journal of Environmental Protection4 (2013), No. 1B, pp. 515510.4236/jep.2013.41B010Search in Google Scholar

33 M. R.Khan: Adsorption of lead by bentonite clay, International Journal of Scientific Research & Management Studies5(2017), No. 7, pp. 58005804, 10.18535/ijsrm/v5i7.02Search in Google Scholar

34 S. A.Al-Jlil, M. S.Latif: Evaluation of equilibrium isotherm models for the adsorption of Cu and Ni from wastewater on bentonite clay, Materiali in Tehnologije47 (2013), No. 4, pp. 481486544.723:666.322Search in Google Scholar

35 X.Hu, B. N.Hong, Q.Du, Y. M.Meng: Influence of water contents on shear strength of coal-bearing soil, Rock & Soil Mechanics30 (2009), No. 8, pp. 22912294 (in Chinese) 10.16285/j.rsm.2009.08.009Search in Google Scholar

36 H. D.Wang, C. D.Gao, F. C.Liu: Experimental study of the influence of water content on the mechanical characteristics of unsaturated sandy soil, Journal of Hunan University24 (2015), No. 1, pp. 9096 (in Chinese), 10.13544/j.cnki.jeg.2015.06.003Search in Google Scholar

Published Online: 2019-01-18
Published in Print: 2018-12-04

© 2018, Carl Hanser Verlag, München

Downloaded on 5.12.2023 from https://www.degruyter.com/document/doi/10.3139/120.111275/html
Scroll to top button