Accessible Requires Authentication Published by De Gruyter April 6, 2013

Is mapping a part of common cause failure quantification?

Ist „Mapping“ Bestandteil der GVA-Quantifizierung?
J. K. Vaurio
From the journal Kerntechnik

Abstract

Important issues in any procedure used for estimating basic event probabilities of common cause failures (CCF) for probabilistic safety assessments (PSA) are: which plants and systems to use, how to combine them, and how to transform data from systems with different numbers of similar components to obtain CCF-rates for a specific group of components. These issues are addressed with focus on the last part called “mapping”. Certain parametric models are considered for transforming CCF event experience from data-source plants to the target plant, the plant of interest. Two sets of rules are reviewed and compared for transforming rates and assessment uncertainties from larger to smaller systems i.e. mapping down. Epistemic uncertainties are taken into account in the estimation. Mapping down equations are presented also for the alpha-factors and for the variances of CCF-rates. Consistent rules are developed for mapping up CCF-rates, uncertainties and alpha factors from smaller to larger systems. These rules are not limited to a binomial CCF model. Consistency requirements are severe and dictate certain limits to possible parametric values. Empirical alpha factors are used to quantify robust mapping ratios of complete CCF-rates. Mapping is critically analyzed and practical recommendations are made.

Kurzfassung

Bei der Schätzung von Wahrscheinlichkeiten für GVA-Basisereignisse in einer Gruppe ähnlicher, redundanter Komponenten im Rahmen von PSA stellen sich stets die wichtigen Fragen, welche Anlagen und Systeme als Datenquellen geeignet sind und zur Verfügung stehen und wie diese Daten – zum Teil aus Systemen anderen Komponentengruppenumfangs stammend – zu übertragen sind. Diese Fragen werden mit Schwerpunktsetzung auf dem letztgenannten Aspekt, dem sogenannten „Mapping“ behandelt. Bestimmte Parametermodelle werden herangezogen, um GVA-Ereignisse aus der Betriebserfahrung anderer Anlagen auf die zu untersuchende Anlage (Zielanlage) zu übertragen. Für die Übertragung der zugehörigen Ausfallraten und deren Unsicherheit von größeren auf kleinere Komponentengruppengrößen (“Mapping down“) werden zwei Vorschriften vergleichend bewertet. Des weiteren wird auf epistemische Unsicherheiten der Ratenschätzungen eingegangen. Es werden Gleichungen für das Mapping Down sowohl für Alphafaktoren als auch für die Unsicherheiten der GVA-Raten angegeben. Auch für das Mapping Up – Übertragung von kleineren auf größere Komponentengruppen – von GVA-Raten, von deren Unsicherheiten und von Alphafaktoren werden konsistente Vorschriften entwickelt, die nicht auf die Annahme eines binomialen GVA-Modells eingeschränkt sind. Dabei bestehen restriktive Konsistenzbedingungen, die mögliche Wertebereiche der Parameter einengen. Empirisch bestimmte Alphafaktoren werden herangezogen, um dem Mapping gut abgesicherte Verhältnisse integraler GVA-Raten zugrunde legen zu können. Das Mapping wird kritisch bewertet. Abschließend wird eine Reihe nützlicher Empfehlungen ausgesprochen.

References

1Vaurio, J. K.: The Theory and Quantification of Common Cause Shock Events for Redundant Standby Systems. Reliability Engineering and System Safety43 (1994) 28910.1016/0951-8320(94)90034-5 Search in Google Scholar

2Vaurio, J. K.; Jänkälä, K. E.: Quantification of Common Cause Failure Rates and Probabilities for Standby – System Fault Trees Using International Event Data Sources. Proceedings of PSAM6 Conference (San Juan, Puerto Rico, June 23–28, 2002), Vol. 1, 31–37, ELSEVIER Science, Amsterdam (2002) Search in Google Scholar

3Vaurio, J. K.: Quantification and Uncertainties of Common Cause Failure Rates and Probabilities. Proceedings of ESREL 2003 Conference (June 15–18, 2003, Maastricht), Vol. 2, 1601–1606, A. A. BALKEMA, Lisse (2003) Search in Google Scholar

4Mosleh, A.; Fleming, K. N.; Parry, G. W.; Paula, H. M.; Worledge, D. H.; Rasmuson, D. M.: Procedures for Treating Common Cause Failures in Safety and Reliability Studies. NUREG/CR-4780, U.S. Nuclear Regulator Commission, Washington D.C. (1989) Search in Google Scholar

5Vaurio, J. K.: Estimation of Common Cause Failure Rates Based on Uncertain Event Data. Risk Analysis14 (1994) 383 Search in Google Scholar

6Vaurio, J. K.: Extensions of the uncertainty quantification of common cause failure rates. Reliability Engineering and System Safety78 (2002) 6310.1016/S0951-8320(02)00110-2 Search in Google Scholar

7Mosleh, A.; Rasmuson, D. M.; Marshall, F. M.: Guidelines on Modeling Common – Cause Failures in Probabilistic Risk Assessment. NUREG/CR – 5485 (INEEL/EXT-97-01327), US Nuclear Regulatory Commission, Washington D.C. (1998) Search in Google Scholar

8Vaurio, J. K.: Mapping up and down common cause failure rates and impact weights. Proceedings of ESREL 2005 Conference (June 27–30, 2005, Tri City), A.A. BALKEMA Search in Google Scholar

9Siu, N.; Mosleh, A.: Treating Data Uncertainties in Common Cause Failure Analysis. Nuclear Technology84 (1989) 265 Search in Google Scholar

10Marshall, F. M.; Rasmuson, D. M.; Mosleh, A.: Common-Cause Failure Parameter Estimations. NUGEG/CR-5497. U.S. NRC, Washington D.C. (1998) Search in Google Scholar

11Hämäläinen, A.; Jänkälä, K.: Private communication; Draft MS thesis (2004) Search in Google Scholar

12Vaurio, J. K.: Optimization of test and maintenance intervals based on risk and cost. Reliability Engineering and System Safety49 (1995) 2310.1016/0951-8320(95)00035-Z Search in Google Scholar

Received: 2005-12-28
Published Online: 2013-04-06
Published in Print: 2006-02-01

© 2006, Carl Hanser Verlag, München