Accessible Requires Authentication Published by De Gruyter April 5, 2013

Modelling of Carbon-14, Iodine-129 and Cesium-137 releases from near surface radioactive waste disposal and their impact on environment and humans

Modellierung der Freisetzung von C-14, I-129 und Cs-137 aus einem oberflächennahen Endlager für radioaktive Abfälle und deren Auswirkungen auf die Ungebung und den Menschen
D. Adliene, N. Skridaila, S. Motiejunas and C. Meurville
From the journal Kerntechnik

Abstract

Near surface disposal of low and intermediate level radioactive waste is probably the best solution for a long term radioactive waste management today. For safety assurance all near surface disposal aspects and evolution scenarios should be reviewed and analyzed including repository design and site selection, because releases of radionuclides from the repository into the environment cause radiation exposure to the public. Mechanisms of 14C, 129I and 137Cs transportation from the repository into the environment, modelled for the hypothetical radioactive waste disposal facility in Lithuania, are investigated and the results of effective dose calculations for the main exposure pathways are discussed in this paper. The RESRAD-OFFSITE code has been used in this study for modelling purposes. It is shown that the radionuclide transport time into the environment, its radioactive contamination and the radiation exposure to the public mostly depends on the mobility and sorption properties of radionuclides and on the appropriate transport pathways from the repository into the environment.

Kurzfassung

Eine nahe der Oberfläche liegende Lagerungseinrichtung für niedrig- und mittelradioaktive Abfälle ist vielleicht heute die beste Lösung für langjähriges Management radioaktiver Abfälle. Um Strahlenschutz und Strahlensicherheit zu gewährleisten, ist es notwendig, alle Aspekte der Lagerung zu betrachten und die entsprechenden Szenarien zu analysieren und zu überprüfen, unter Berücksichtigung der Auslegung der Lagerstätte und der Standortwahl, da die Freisetzung radioaktiver Stoffe in die Umgebung mit einer zusätzlichen Strahlenexposition der Bevölkerung verbunden ist. Mit Hilfe des RESRAD-OFFSITE Codes wurde die hypothetische Lagerungs-einrichtung für Litauen modelliert, deren Parameter den realen Bedingungen des künftigen Endlagers entsprechen. Es wird gezeigt, dass die Transportzeit der radioaktiven Stoffe in die Umgebung am ehesten von den Mobilitäts- und Sorptions-Eigenschaften der Radionuklide und von den entsprechenden Trans-portwegen von der Lagerstätte in die Umgebung abhängig ist.


E-mail:

References

1 Yu, et al.: RESRAD: Manual for Implementing Residual Radioactive Material Guidelines (1993) 10.2172/10168408 Search in Google Scholar

2 Han, K. W.; Heinonen, J.; Bonne, A.: Radioactive waste disposal: Global experience and challenges, IAEA Bulletin39 (1997) 33 Search in Google Scholar

3 IAEA: Scientific and Technical Basis for the Geological Disposal of Radioactive waste. Technical Report Series No. 413, Vienna, IAEA (2003) Search in Google Scholar

4 SR 97: Waste, repository design and sites. Technical Report TR-99-08, Stockholm, SKB (1999) 90 p. Search in Google Scholar

5 Schneider, J.; Zuidema, P.; Smith, P.et al.: Preliminary calculations of radionuclide release from the repository for spent nuclear fuel in Switzerland. NAGRA, Switzerland (1999) Search in Google Scholar

6 SR 97: Radionuclide transport calculations. Technical Report TR-99-23, Stockholm, SKB (1999) Search in Google Scholar

7 IDEA, 1999b: Derivation of quantitative acceptance criteria for disposal of radioactive waste to near surface facilities: development and implementation of an approach. IAEA, Vienna (1999) Search in Google Scholar

8 IAEA: Safety assessment methodologies for near surface disposal facilities. Review and enhancement of safety assessment approaches and tools. Results of a coordinated research project. Vol. 1 (2004) Search in Google Scholar

9 IAEA: Scientific and technical basis for the near surface disposal of low and intermediate level waste. Vienna, IAEA (2002) Search in Google Scholar

10 Bylkin, B. K., et al.: Induced radioactivity and waste classification for components of Chernobyl Unit 1. Nuclear Technology136 (2001) 76 Search in Google Scholar

11 Brazauskaite, A.; Poskas, P.: Radionuclide migration from the geological repository of the RBMK-1500 spent nuclear fuel in crystalline rocks. 2. Identification of safety relevant radionuclides for a geological repository. Energetika2 (2006) 47 (in Lithuanian) Search in Google Scholar

12 Yu, C.: Modelling of Low-Level-Waste Disposal for Environmental Impact Analysis. Proceedings of the Symposium on Waste Management, Tucson, Arizona, March 1–5, 1987 Search in Google Scholar

13 Cheng, J.-J., et al.: RESRAD Parameter Sensitivity Analysis, Report of Argonne National Laboratory ANL/EAIS-3 (1991) 10.2172/6400651 Search in Google Scholar

14 Eckermann, K. F., Wolbarst, A. B., Richardson, A. C. B.: Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion and Ingestion. USA Environmental Protection Agency. Federal Guidance Report No 11 (1993) Search in Google Scholar

15 Eckermann, K. F., Ryman, J. C.: External exposures to radionuclides in Air, Water and Soil. USA Environmental Protection Agency. Federal Guidance Report No. 12 (1993) Search in Google Scholar

16 ICRP: Radionuclide Transformations. ICRP Publication Nr.38 (1983) Search in Google Scholar

17 UNSCEAR, 2000: Report to General Assembly. Sources an Effects of Ionizing Radiation: United Nations Scientific Committee on the Effects of Atomic Radiation. Vol. 1: Sources; Vol. 2: Effects. United Nations, New York Search in Google Scholar

18 Kennedy, W.E., Jr., Strenge, D.L.: Residual Radioactive Contamination from Decommissioning: Volume I, Technical Basis for Translating Contamination Levels to Annual Total Effective Dose Equivalent, NUREG/CR-5512, Washington, U.S. Nuclear Regulatory Commission (1992) Search in Google Scholar

19 Sheppard, M. I.; Thibault, D. H.: A Four-Year Mobility Study of Selected Trace Elements and Heavy Metals. Journal of Environmental Quality20 (1991) 101 Search in Google Scholar

20 Coughtrey, P. J., et al.: Radionuclide Distribution and Transport in Terrestrial and Aquatic Ecosystems. A Compendium of Data. Netherlands, A. A. Balkema (1985) Search in Google Scholar

21 Hoeffner, S. L.: Radionuclide Sorption on Savannah River Plant Burial Ground Soil. A Summary and Interpretation of Laboratory Data, DP-1702. Savannah River Laboratory (1985) Search in Google Scholar

22 Uchida, S.; Kamada, H.: Sorption of Strontium on Soils in Layered and Aerated Zones. Hoken Butsuri22 (1987) 179 Search in Google Scholar

23 Bond, W. J.; Smiles, D. E.: Predicting the Average Movement of Reactive Solutes in Soils. Soil Use Management4 (1988) 11510.1111/j.1475-2743.1988.tb00746.x Search in Google Scholar

24 Clapp, R. B.; Hornberger, G. M.: Empirical Equations for Some Soil Hydraulic Properties. Water Resources Research14 (1978) 60110.1029/WR014i004p00601 Search in Google Scholar

25 IAEA: Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments. Technical Report Series No. 364. Vienna, IAEA (1994) Search in Google Scholar

26 Isherwood, D.: Geoscience Data Base Handbook for Modeling a Nuclear Waste Repository, NUREG/CR-0912, Vol. 1 and Vol. 2. Washington, U.S. Nuclear Regulatory Commission (1981) Search in Google Scholar

27 Sheppard, M. I.; Thibault, D. H.: Default Soil Solid/Liquid Partition Coefficients, Kds, for Four Major Soil Types: A Compendium. Health Physics59 (1990) 471 Search in Google Scholar

28 Yim, M.-S., Simonson, S.A., Sullivan, T.M.: Investigation of C-14 release in an engineered low-level waste disposal facility. Nuclear Technology114 (1996) 254 Search in Google Scholar

29 Filistovic, V., Nedveckaite, T., Mykolaitiene, N.: Biosphere modelling for critical group assessment in the near field radioactive waste disposal. Sveikatos mokslai (Health sciences)13 (2003) 75 Search in Google Scholar

30 HN 73-2001 Pagrindines radiacines saugos normos (Basic Standards for Radiation Protection, Lithuanian Hygiene Norm) (2001) Search in Google Scholar

Received: 2007-2-12
Published Online: 2013-04-05
Published in Print: 2007-11-01

© 2007, Carl Hanser Verlag, München