Accessible Requires Authentication Published by De Gruyter April 5, 2013

Chebyshev polynomials expansion method for solving the one-dimensional transport equation in spherical geometry

Methode zur Entwicklung von Tschebyscheff-Polynomen zur Lösung der eindimensionalen Transportgleichung in sphärischer Geometrie
F. Yaşa
From the journal Kerntechnik

Abstract

Using certain well-known properties of Chebyshev polynomials, an efficient analytical approach to evaluate the Boltzmann equation is presented in one-dimensional spherical geometry. The procedure is based on the expansion of the angular flux in terms of a series of Chebyshev polynomials.

Kurzfassung

Mit Hilfe einiger gut bekannter Eigenschaften von Tschebyscheff-Polynomen wird ein effizienter analytischer Ansatz zur Berechnung der Boltzmann-Gleichung in eindimensionaler sphärischer Geometrie vorgestellt. Das Verfahren basiert auf der Entwicklung des Winkelflusses in Form einer Tschebyscheff-Polynomreihe.


* E-Mail:

References

1 Davison, B.: Angular distribution due to an isotropic point source and spherically symmetrical eigensolutions of the transport equation. Progress Nuclear Energy36 (2004) 323 Search in Google Scholar

2 Conkie, W. R.: Polynomial approximations in neutron transport theory. Nuclear Science and Engineering6 (1959) 260 Search in Google Scholar

3 Yabushita, S.: Tschebyscheff polynomial approximation method of the neutron-transport equation. J. of Math. Phys.2 (1961) 543 Search in Google Scholar

4 Anli, F.; Yasa, F.; Güngör, S.; Öztürk, H.: TN approximation to neutron transport equation and application to critical slab problem. J. Quant. Spectrosc. Radiat. Transfer101 (2006) 129 Search in Google Scholar

5 Asadzadeh, M.; Kadem, A.: Chebyshev spectral SN method for the neutron transport equation. Computer and Mathematics with Applications52 (2006) 509 10.1016/j.camwa.2005.11.039 Search in Google Scholar

6 Siewert, C. E.; Williams, M. M. R.: The effect of anisotropic scattering on the critical slab problem using synthetic kernel. J. Phys. D.: Appl. Phys.10 (1977) 2031 Search in Google Scholar

7 Klose, A. D.; Larsen, E. W.: Light transport in biological tissue based on the simplified spherical harmonics equations Journals of Computational Physics220 (2006) 441 Search in Google Scholar

8 Sahni, D. C.; Sharma, A.: Computation of higher spherical harmonics moments of the angular flux for neutron transport problems in spherical geometry. Annals of Nuclear Energy27 (2000) 411 Search in Google Scholar

9 Yilmazer, A.: Spectral PN approximation to the transport problems in spherical media. J. Quant. Spectrosc. Radiat. Transfer108 (2007) 403 10.1016/j.jqsrt.2007.04.005 Search in Google Scholar

Received: 2009-4-29
Published Online: 2013-04-05
Published in Print: 2010-03-01

© 2010, Carl Hanser Verlag, München