Accessible Requires Authentication Published by De Gruyter April 5, 2013

An analytical solution for the one-dimensional time-dependent SN transport equation for bounded and unbounded domains in cartesian geometry

C. F. Segatto, M. T. Vilhena and T. T. Gonçalez
From the journal Kerntechnik

Abstract

In this work a general analytical solution is reported, expressed in integral form for the time-dependent, one-dimensional SN transport equation in cartesian geometry valid for bounded and unbounded domains (0 < x <), using the double Laplace transform technique. The main idea consists in the application of the Laplace transform technique in time variable and the solution of the resulting equation by the LTSN method using appropriate boundary conditions for bounded and unbounded domain problems. We also report about the numerical simulations carried out.

Kurzfassung

Eine analytische Lösung für die eindimensionale, zeitabhängige SN Transportgleichung für beschränkte und unbeschränkte Gebiete in kartesischer Geometrie. In der vorliegenden Arbeit wird über eine allgemeine analytische Lösung berichtet, ausgedrückt in integraler Form, für die eindimensionale, zeitabhängige SN Transportgleichung in kartesischer Geometrie für beschränkte und unbeschränkte Gebiete (0 < x <) unter Verwendung des Laplace-Transformationsverfahrens. Die grundlegende Idee besteht in der Anwendung des zeitvariablen Laplace-Transformationsverfahrens und der Lösung der resultierenden Gleichungen mit Hilfe der LTSN Methode und geeigneter Randbedingungen für beschränkte und unbeschränkte Gebiete. Über die durchgeführten numerischen Simulationen wird ebenfalls berichtet.


* Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil. E-mail:

References

1 Segatto, C. F.; Vilhena, M. T.; Gonçalez, T. T.: An Analytical Integral Formulation for the Time-Dependent SN Transport Equation in a Slab by The Double Laplace Transform Technique. Kerntechnik73 (2008) 176 Search in Google Scholar

2 Filippone, W. L.; Ganapol, B. D.: Time-Dependent One-Dimensional Transport Calculations Using the Streaming Ray Method. Nuclear Science and Engineering83 (1982) 366373 Search in Google Scholar

3 Ganapol, B. D.; McKenty, P. W.: The Generation of Time-Dependent Neutron Transport Solutions in Infinite Media. Nuclear Science and Engineering64 (1977) 317331 Search in Google Scholar

4 Ganapol, B. D.: Solution of the time-dependent monoenergetic neutron transport equation in semi-infinite medium. Transport Theory and Statistical Physics7 (1978) 103122 Search in Google Scholar

5 Ganapol, B. D.: Time Dependent surface angular flux for a semi-infinite medium with specular reflection. Nuclear Science and Engineering80 (1982) 412415 Search in Google Scholar

6 Ganapol, B. D.; McKent, P. W.; Peddicord, K. L.: The generation of time-dependent neutron transport solutions in infinite media. Nuclear Science and Engineering64 (1977) 317331 Search in Google Scholar

7 Beynon, T. D.; Coleman, M.: Direct Solutions of Time-Dependent Neutron slowing down problems using numerical Laplace transforms in infinite media. Nuclear Science and Engineering64 (1973) 317331 Search in Google Scholar

8 Keller, P. M.; Lee, J. C.: A time-dependent collision probability method for one-dimensional space-time nuclear reactor kinetics. Nuclear Science and Engineering129 (1998) 124148 Search in Google Scholar

9 Oliveira, J. P.; Cardona, A. V.; Vilhena, M. T.: Solution of the One-dimensional Time-Dependent Discrete Ordinates Problem in a Slab by the Spectral and LTSN Method. Annals of Nuclear Energy29 (2002) 132010.1016/S0306-4549(01)00033-0 Search in Google Scholar

10 El Wakil, S. A.; Degheidy, A. R.; Sallah, M.: Time-dependent neutron transport infinite media using Pomraning-Eddington approximation. Ann Nucl Energy32 (2006) 343353 Search in Google Scholar

11 Tureci, G.; Gulecyuz, M. C.; Tezcan, C.: HN solutions of the time dependent linear neutron transport equation for a slab and a sphere. Kerntechnik72 (2007) 6673 Search in Google Scholar

12 Abate, J.; Valkó, P. P.: Multi-Precision Laplace Transform Inversion. International Journal for Numerical Methods in Engineering60 (2004) 97999310.1002/nme.995 Search in Google Scholar

13 Valkó, P. P.; Abate, J.: Comparison of sequence accelerators for Gaver method of numerical Laplace transform inversion. International Journal of Computer Mathematics48 (2004) 629636 Search in Google Scholar

14 Pazos, R. P.; Thompson, M.; Vilhena, M. T.: Error bounds for spectral collocation method for linear Boltzmann equation. International Journal of Computational and Numerical Analysis and Applications1 (2002) 237268 Search in Google Scholar

15 Vilhena, M. T.; Pazos, R. P.: Convergence of the LTSN method: approach of C0 semigroups. Progress in Nuclear Energy34 (1999) 7786 Search in Google Scholar

16 Case, K.M.; Hoffmann, F.; Placzek, G.: Introduction to the theory of Neutron Discusion, 1, US Government Printing Office, Washington DC, 1953 Search in Google Scholar

Received: 2009-6-9
Published Online: 2013-04-05
Published in Print: 2010-03-01

© 2010, Carl Hanser Verlag, München