Accessible Requires Authentication Published by De Gruyter April 5, 2013

Interactions of radionuclides in solution with ions and with trace concentrations of solid phase

Wechselwirkungen von Radionukliden in Lösung mit Ionen und mit Spurenkonzentrationen fester Phase
F. Kepák
From the journal Kerntechnik


Interactions of radionuclides in extremely low concentrations were determined by measurement of their apparent self-diffusion coefficients. Formation of trace amounts of hydrolysis products, hydroxides of RuIV, MnIV, FeIII, EuIII and of ionic precipitate of AgI were determined from apparent self-diffusion coefficients. Transition of 85Sr2+ by ion exchange or by coprecipitation into trace amounts of FeIII-hydroxide and MnIV-hydrated oxide was revealed by this method. 85Sr2+ sorbed on trace amounts of FeIII-hydroxide and MnIV-hydrated oxides lost its individual chemical properties. This can negatively affect its separation from solution. Formation of unstable embryos of Ag131I trace precipitate in unsaturated solution at concentration of Ag+ 1 · 10−9 mol · l−1 and 131I−1 · 10−8 mol · l−1 was detected by self-diffusion. Formation of trace amounts of Ag131I led to the decrease of sorption of 131I on hydrated ferric oxide.


Die Wechselwirkung von Radionukliden bei extrem niedrigen Konzentrationen wurde bestimmt durch Messung ihrer scheinbaren (apparenten) Selbstdiffusionskoeffizienten. Die Entstehung der Spurenmengen von Hydrolyseprodukten, Hydrooxiden von RuIV, MnIV, FeIII, EuIII und Ionenausfällung von AgI, wurde mit Hilfe der scheinbaren (apparenten) Selbstdiffusionskoeffizienten bestimmt. Der Übergang von 85Sr2+ durch Ionenaustausch oder durch Mitfällung von FeIII-Hydroxid und MnIV-Oxidhydrat in Spurenmengen wurde durch diese Methode entdeckt. 85Sr2+ sorbiert an Spurenmengen von FeIII-Hydroxid und MnIV-Oxidhydrat verlor seine individuellen chemischen Eigenschaften. Dies kann die Abtrennung aus Lösungen negativ beeinflussen. Die Entstehung von instabilen An-teilen bei der Ag131I Spurenausfällung in ungesättigter Lö-sung bei Konzentrationen von Ag+1 · 10−9 mol · l−1 and 131I−1 · 10−8 mol · l−1 wurde durch Selbstdiffusion nachgewiesen. Die Entstehung von Spurenmengen von Ag131I führte zur Abnahme der Sorption von 131I an Eisenoxidhydrat.


1 Thiers, R. E.: Trace Analysis (Hoe, J. H.; Koch, H. J., Eds.), p. 641, Wiley, New York (1957) Search in Google Scholar

2 Beneš, P.; Majer, V.: Trace Chemistry of Aqueus Solutions. General Chemistry and Radiochemistry, pp. 33131, Academia, Prague1980 Search in Google Scholar

3 Kepák, F.: Sorpce a koloidní vlastnosti radionuklidu ve vodných roztocích (Sorption and Colloidal Properties of Radionuclides in Water Solutions, in Czech), pp. 2565, Studie CSAV, No. 14, Academia, Prague 1985 Search in Google Scholar

4 Kepák, F.: Behaviour of radionuclides in aqueous solutions and their sorption on hydrated oxides and some insoluble salts, Atomic Energy Review. Supplement No. 2, pp. 562, IAEA, Vienna1981 Search in Google Scholar

5 Kepák, F.: Behavior of carrier-free radinuclides. In: Radiotracer Techniques and Applications, vol. 1, pp. 339373, (Evans, E. A.; Muramatsu, M., Eds.), Marcel Dekker, Inc., New York and Basel, 1977 Search in Google Scholar

6 Kepák, F.: Adsorption and colloidal properties of radioactive elements in trace concentrations. Chem. Rev.71 (1971) 357369 Search in Google Scholar

7 Neumann, L.: Radioaktivní odpady (Radioactive wastes, in Czech) in Kuraš, al., Odpady, jejich využití a zneškodnění (Wastes, their Utilization and Removal, in Czech), pp. 115119, ČEÚ, Prague, 1994 Search in Google Scholar

8 Štamberg, K.: Technologie jaderných paliv (Technology of Nuclear Fuels, in Czech), pp. 6890, ČVUT, Prague, 1998 Search in Google Scholar

9 Kopřiva, M., Maláč, M.: Chemický režim základních technologických okruhů jaderné elektrárny Dukovany, (Chemical mode of fundamental technological circuits of nuclear power plant Dukovany, in Czech), Bezpečnost jad. energie9 (47), pp. 2128 (2001) Search in Google Scholar

10 Kepák, F.; Křivá, J.: Self-diffusion coefficients of 106Ru and 106RuNO in ionic and colloidal states. J. inorg. nucl. Chem.32 (1970) 719729 Search in Google Scholar

11 Kepák, F.; Křivá, J.: Self-diffusion of 85Sr, 59Fe and 52Mn in water solutions. J. inorg. nucl. Chem.34 (1972) 185190 Search in Google Scholar

12 Kepák, F.; Křivá, J.: Self-diffusion of trace concentrations of 144Ce, 147Pm and 155Eu in water solution. J. inorg. nucl. Chem.33 (1971) 17411748 Search in Google Scholar

13 Kepák, F.; Křivá, J.: Self-diffusion of 131I and 110Ag+ in microconcentrations: their mutual interaction at high dilution. J. inorg. nucl. Chem.34 (1972) 2343 – 2549 Search in Google Scholar

14 Matějka, al.: Vyhořelé jaderné palivo (Burned nuclear fuel), sv. 5, Phare, Fakulta jaderná a fyzikálně inženýrská ČVUT Praha, 1996 Search in Google Scholar

15 Gosman, A.; Jech, Č.: Jaderné metody vchemickém výzkumu (Nuclear methods in chemical research, in Czech), Academia, Prague, 1989 Search in Google Scholar

16 Brémard, C.; Nowogrocki, G.; Tridot, G.: Préparation et étude des solutions aqueuses de ruthenium III et IV. Bull. Soc. chim. Fr. (1968) 19611964 Search in Google Scholar

17 Lange, N. A. (ed.): Handbook of Chemistry, pp. 116, 117, McGraw-Hill Book Copany, New York, 1967 Search in Google Scholar

18 Moeller, T.; Kremers, H.: The Basicity characteristics of scandium, yttrium and the rare earth elements. Chem. Rev.37 (1945) 97159 Search in Google Scholar

19 Gmelins Handbuch der anorganischen Chemie, 8. Auflage, Mangan, Teil C, Verbindungen, p. 414, Springer Verlag, Berlin, 1974 Search in Google Scholar

20 Remy, H.: Anorganická chemie, část II, (Inorganic Chemistry, Part II, in Czech), p. 239, SNTL, Prague, 1962 Search in Google Scholar

21 Booth, F.; Wills, H. H.: The Electroviscous effect for suspensions of solid spherical particles. Proc. R. Soc. London, A203 (1950) 53355110.1098/rspa.1950.0155 Search in Google Scholar

22 Nekrasov, B. V.: Všeobecná a anorganická chémia, cást III), (General and Inorganic Chemistry, Part. III, in Slovak), p. 50, SAV, Bratislava, 1957 Search in Google Scholar

23 Kepák, F.; Caletka, R.; Nová, I.: Retention of 85Sr and 147Pm on insoluble hydroxides and phosphates prepared by the sol-gel procedure. J. Radioanal. Chem.25 (1975) 247254 Search in Google Scholar

24 Kolařík, Z.: Sorption radioaktive isotopen an niederschlägen VII. Sorption von strontium an Mn(IV)-hydroxyd. Collection Czechoslov. Chem. Commun27 (1962) 951959 Search in Google Scholar

25 Kepák, F.: Sorption of small amounts of radioiodine as iodide anions on hydrated ferric oxide containing silver. Collection Czechoslov. Chem. Commun31 (1966) 14931500 Search in Google Scholar

26 Kepák, F.: Sorption of microamount of colloidal silver jodide on hydrated iron(III) oxide. Radiochem. Radioanal. Letters22 (1975) 361366 Search in Google Scholar

Received: 2009-10-25
Published Online: 2013-04-05
Published in Print: 2010-08-01

© 2010, Carl Hanser Verlag, München