Skip to content
Accessible Unlicensed Requires Authentication Published by De Gruyter December 18, 2014

Burnup analysis of the VVER-1000 reactor using thorium-based fuel

Abbrandanalyse eines VVER-1000 Reaktors mit einem auf Thorium basierenden Brennstoff
M. E. Korkmaz, O. Agar and E. Büyüker
From the journal Kerntechnik


This paper aims to investigate 232Th/233U fuel cycles in a VVER-1000 reactor through calculation by computer. The 3D core geometry of VVER-1000 system was designed using the Serpent Monte Carlo 1.1.19 Code. The Serpent Code using parallel programming interface (Message Passing Interface-MPI), was run on a workstation with 12-core and 48 GB RAM. 232Th/235U/238U oxide mixture was considered as fuel in the core, when the mass fraction of 232Th was increased as 0.05–0.1–0.2–0.3–0.4 respectively, the mass fraction of 238U equally was decreased. In the system, the calculations were made for 3 000 MW thermal power. For the burnup analyses, the core is assumed to deplete from initial fresh core up to a burnup of 16 MWd/kgU without refuelling considerations. In the burnup calculations, a burnup interval of 360 effective full power days (EFPDs) was defined. According to burnup, the mass changes of the 232Th, 233U, 238U, 237Np, 239Pu, 241Am and 244Cm were evaluated, and also flux and criticality of the system were calculated in dependence of the burnup rate.


Ziel dieser Arbeit ist die Untersuchung von 232Th/233U Brennstoffzyklen in einem VVER-1000 Reaktor mit Hilfe von Computerberechnungen. Die 3D Kerngeometrie des VVER-1000 Systems wurde ausgeführt mit Hilfe des Serpent Monte Carlo 1.1.19 Codes. Die Berechnungen mit Hilfe des Serpent Codes, der parallele Programmschnittstellen (Message Passing Interface-MPI) verwendet, wurden mit einer Workstation mit 12-Core and 48 GB RAM durchgeführt. Als Brennstoff wurde ein 232Th/235U/238U Oxidgemisch verwendet bei Erhöhung des Massenanteils von 232Th in Schritten von jeweils 0.05–0.1–0.2–0.3–0.4. Der Masseanteil von 238U wurde gleichermaßen verringert. In diesem System wurden die Berechnungen für eine thermische Leistung von 3 000 MW durchgeführt. Für die Abbrandanalyse wird angenommen, dass der anfangs frische Kern bis zu einem Abbrand von 16 MWd/kgU abgereichert wird. Bei den Berechnungen wurde ein Abbrandinterval von 360 effektiven Volllasttagen festgelegt. In Abhängigkeit vom Abbrand wurden die Massenänderungen von 232Th, 233U, 238U, 237Np, 239Pu, 241Am und 244Cm ausgewertet. Flussdichte und Kritikalität des System wurden berechnet in Abhängigkeit von der Abbrandrate.

* Corresponding author: E-mail:


1 IAEA Nuclear Energy Series No. NF-T-2.4, Role of Thorium to Supplement Fuel Cycles of Future Nuclear Energy Systems. Vienna, Austria (2012)Search in Google Scholar

2 U.S. Atomic Energy Commission: The Use of Thorium in Power Reactors. WASH 1097, Washington (1969)Search in Google Scholar

3 Bultman, J. H.: Technology Assessment HTR: Pt. 5: Thorium Fuelled High Temperature Gas Cooled Reactors. Netherlands Energy Research Foundation (ECN), Petten (1996)Search in Google Scholar

4 European Commission, A Present View of the Thorium Nuclear Fuel Cycle. Report EUR-1777, Brussels (1997)Search in Google Scholar

5 European Commission, Thorium as a Waste Management Option, Report EUR-19142, Brussels (2000)Search in Google Scholar

6 David, S.; Huffer, A.; Nifenecker, H.: Revisiting the thorium–uranium nuclear fuel cycle. Europhysics News38 (2007) 2410.1051/EPN:2007007Search in Google Scholar

7 Lombardi, C.; Luzzi, L.; Padovani, E.; Vettraino, F.: Thoria and inert matrix fuels for a sustainable nuclear power. Progress in Nuclear Energy50 (2008) 94410.1016/j.pnucene.2008.03.006Search in Google Scholar

8 Breza, J. et al.: Study of thorium advanced fuel cycle utilization in light water reactor VVER-440. Annals of Nuclear Energy37 (2010) 68569010.1016/j.anucene.2010.02.003Search in Google Scholar

9 Acır, A.; Ubeyli, M.: Burning of reactor grade plutonium mixed with thorium in a hybrid reactor. Journal of Fusion Energy26 (2007) 29310.1007/s10894-007-9078-1Search in Google Scholar

10 Korkmaz, M. E.; Yiğit, M.; Agar, O.: Burnup calculations using serpent code in accelerator driven thorium reactor. Kerntechnik72 (2013) 19319710.3139/124.110358Search in Google Scholar

11 Korkmaz, M. E.; Agar, O.: The investigation of burnup characteristic using serpent monte carlo code for sodium cooled fast reactor. Nuclear Engineering and Technology46 (3) (2014) 40741210.5516/NET.00.2013.050Search in Google Scholar

12 Sahin, S.; Sahin, H. M.; Acır, A.; Al-Kusayer, T. A.: Criticality investigations for the fixed bed nuclear reactor using thorium fuel mixed with plutonium or minor actinides. Annals of Nuclear Energy36 (2009) 103210.1016/j.anucene.2009.06.003Search in Google Scholar

13 Furukawa, et al.: A road map for the realization of global-scale thorium breeding fuel cycle by single molten-fluoride flow. Energy Conversion and Management49 (2008) 183210.1016/j.enconman.2007.09.027Search in Google Scholar

14 Dekusar, V. M.; Kalashnıkov, A. G.; Kapranova, E. N.: On the possibility of plutonium utilization in WWER-1000 type reactors with plutonium-thorium fuel. Preprint IPPE-2986 Obninsk (2003) (in Russian)Search in Google Scholar

15 ElBakkari, et al.: Accuracy assessment of a new Monte Carlo based burnup computer code. Annals of Nuclear Energy45 (2012) 293610.1016/j.anucene.2012.02.011Search in Google Scholar

16 Chatterjee, B.; Mukhopadhyay, D.; et al.: Analyses for VVER-1000/320 reactor for spectrum of break sizes along with SBO. Annals of Nuclear Energy37 (2010) 35937010.1016/j.anucene.2009.12.005Search in Google Scholar

17 PazirandehA.; Ghaseminejad, S.; Ghaseminejad, M. Ç.: Effects of various spacer grid modeling on the neutronic parameters of the VVER-1000 reactor. Annals of Nuclear Energy38 (2011) 1978198610.1016/j.anucene.2011.04.020Search in Google Scholar

18 Leppanen, J.: PSG2/Serpent – a Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code, User's Manual, March 5, (2012)Search in Google Scholar

19 Brown, N. R.; Ludewig, H.; Aronson, A.; Raitses, G.; Todosow, M.: Neutronic evaluation of a PWR with fully ceramic microencapsulated fuel. Part I: Lattice benchmarking, cycle length, and reactivity coefficients. Annals of Nuclear Energy62 (2013) 53854710.1016/j.anucene.2013.05.025Search in Google Scholar

20 Zhang, Y.; Wallenius, J.; Jolkkonen, M.: Transmutation of americium in a large sized sodium-cooled fast reactor loaded with nitride fuel. Annals of Nuclear Energy53 (2013) 263410.1016/j.anucene.2012.08.009Search in Google Scholar

21 Leppanen, J.; Pusa, M.: Burnup Calculation Capability in the PSG2/Serpent Monte Carlo Reactor Physics Code, International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009) Saratoga Springs, New York, May 3–7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL, (2009)Search in Google Scholar

22 Isotalo, A. E.; Aarnio, P. A.: Comparison of depletion algorithms for large systems of nuclides. Annals of Nuclear Energy38 (2011) 26126810.1016/j.anucene.2010.10.019Search in Google Scholar

23 Cetnar, J.: General solution of Bateman equations for nuclear transmutations. Annals of Nuclear Energy33 (2006) 64064510.1016/j.anucene.2006.02.004Search in Google Scholar

Received: 2014-09-29
Published Online: 2014-12-18
Published in Print: 2014-12-18

© 2014, Carl Hanser Verlag, München