Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 21, 2014

Sensitivity of hydrodynamic parameters' distributions in VVER-1000 reactor pressure vessel (RPV) with respect to uncertainty of the local hydraulic resistance coefficients

Sensitivitätsanalyse der hydrodynamischen Parameterverteilungen im Reaktordruckbehälter des Druckwasserreaktors VVER-1000 in Bezug auf die Unsicherheiten der lokalen hydraulischen Widerstandskoeffizienten
  • I. Pasichnyk , S. Nikonov and K. Velkov
From the journal Kerntechnik

Abstract

The paper presents an uncertainty and sensitivity (U&S) study of the VVER-1000 reactor hydraulic properties. It is based on the OECD/NEA coolant transient Benchmark (K-3) on measured data at Kalinin-3 Nuclear Power Plant (NPP) [1]. The novelty of the work consists of taking into consideration all hydraulic uncertainty parameters used in the modeling of the reactor pressure vessel (RPV) internals. A detailed parallel channel ATHLET model of the RPV is developed. It consists of ca. 26 600 control volumes most of them connected with junctions for cross flows. The specific geometry of the gap between upper part of the baffle and upper part of fuel assembly and also a fuel assembly head is taken explicitly into account The influence of the input parameters on the sensitivity and uncertainty of the RPV outlet and inlet temperatures and mass flows as well assembly-wise mass flow and coolant temperature axial distributions is shown.

Kurzfassung

Die vorliegende Veröffentlichung präsentiert die Sensitivitätsanalyse der hydraulischen Eigenschaften des VVER-1000 Reaktors anhand dem OECD/NEA coolant transient Benchmark (K-3) basierend auf Messdaten im Kalinin-3 Kernkraftwerk [1]. Die Neuartigkeit dieser Arbeit besteht darin, dass alle hydraulischen Unsicherheitsparameter bei der Modellierung der Reaktordruckbehälter-Einbauten berücksichtigt sind. Grundlage dafür ist die Modellierung einer Vielzahl von parallelen thermohydraulischen Kanälen im Reaktordruckbehälter mit ATHLET. Das ATHLET-Modell besteht aus ca. 26 600 Kontrollvolumen, die untereinander durch Querströmungselemente verbunden sind. Geometrische Daten und Informationen über die Konstruktion sowohl des Spaltes zwischen oberen Teil des Kernbehälters und des Brennelementkopfes als auch des Brennelementkopfes selbst sind explizit genutzt. Der Einfluss der unsicheren Eingabeparameter auf die Unsicherheit der thermohydraulischen Größen am Ein- und Austritt, auf die brennelementweisen Massenstrom und Kühlmitteltemperatur ist gezeigt.

References

1 Tereshonok, V. A.; Nikonov, S. P.; Lizorkin, M. P.; Velkov, K.; Pautz, A.; Ivanov, K.: Specification: Kalinin-3 Coolant Transient Benchmark – Switching-off of One of the Four Operating Main Circulation Pumps at Nominal Reactor Power. OECD/NEA-DEC, 2008Search in Google Scholar

2 Nikonov, S.: 3D Grid for Calculation of the Coolant Parameter Distributions in the Reactor Volume. 19th Symposium of AER, Varna, Bulgaria, Sept. 21–25, 2009Search in Google Scholar

3 Nikonov, S.; Pautz, A.; Velkov, K.: Detailed modeling of KALININ-3 NPP VVER-1000 reactor pressure vessel by the coupled system code ATHLET/BIPR-VVER. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011), ISBN 978-85-63688-00-2, Rio de Janeiro, RJ, Brazil, May 82, 2011Search in Google Scholar

4 Pasichnyk, I.; Nikonov, S.; Velkov, K.: Uncertainty and sensitivity analysis of fuel assembly head parameters in the framework of Kalinin-3 benchmark transient. Proceedings of the 8th International Conference “Safety Assurance of NPP with VVER”, May 2013, Podolsk, RussiaSearch in Google Scholar

5 Nikonov, S. P.; Jurbenko, A. V.; Semchenkov, Ju. M.: Assessment of influence of in-vessel structures geometry of the VVER-1000 reactor on the accuracy of calculation of thermohydraulic parameters. Proceedings of the 7th International Conference “Safety Assurance of NPP with VVER”, May 2011, Podolsk, RussiaSearch in Google Scholar

6 Pasichnyk, I.; Lerchl, G.; Velkov, K.; Nikonov, S. P.: Calculation of coolant temperature distribution in the fuel assembly head of VVER-1000 NPP. Proceedings of the 7th International Conference “Safety Assurance of NPP with VVER”, May 2011, Podolsk, RussiaSearch in Google Scholar

7 Nikonov, S.: Modeling the spatial distribution of the parameters of the coolant in the reactor volume. 21th Symposium of AER on VVER Reactor Physics and Reactor Safety, Dresden, Germany, September, 19–23, 2011Search in Google Scholar

8 Nikonov, S.; Pasichnyk, I.; Velkov, K.: Comparisons with Measured Data of the Simulated Local Core Parameters by the Coupled Code ATHLET-BIPR-VVER Applying a New Enhanced Model of the Reactor Pressure Vessel. 21th Symposium of AER on VVER Reactor Physics and Reactor Safety, Dresden, Germany, September, 19–23, 2011Search in Google Scholar

9 Velkov, K.; Nikonov, S.; Pasichnyk, I.; Lerchl, G.: Validation of a Pseudo-3D Modelling of Reactor Pressure Vessel with ATHLET System Code for Coupled Code Applications. 20 International Conference on Nuclear Engineering, Proceedings of the ASME 2012 Power Conference POWER2012, July 30-August 3, 2012, Anaheim, California, USA10.1115/ICONE20-POWER2012-54792Search in Google Scholar

10 Nikonov, S.; Pasichnyk, I.; Schöffel, P.; Velkov, K.: From macro- to micro scale hydraulic simulations of a reactor pressure vessel in the framework of the system code ATHLET. 22th Symposium of AER on VVER Reactor Physics and Reactor Safety, Prhonice, Czech Republic, 1.-5. October, 2012Search in Google Scholar

11 Idelchik, I. E.: Handbook of Hydraulic Resistance. Jaico Publishing House, 2005Search in Google Scholar

12 The Computer Code ATHLET, http://www.grs.de/en/computer-code-athletSearch in Google Scholar

13 Krzykacz, B.; Hofer, E.; Kloos, M.: A Software System for Probabilistic Uncertainty and Sensitivity Analysis of Results from Computer Models. Proc. International Conference on Probabilistic Safety Assessment and Management (PSAM-II), San Diego, Ca., USA, 1994Search in Google Scholar

14 Triola, M. F.: Elementary Statistics Using EXCEL. Pearson Custom Publishing, 2001Search in Google Scholar

15 Nikonov, S.; Lizorkin, M.; Langenbuch, S.; Velkov, K.: Modelling of thermocouples’ Measurements at Core Exit of Reactor VVER-1000 with the Coupled System Code ATHLET/BIPR-VVER. 17th Symposium of AER on VVER Reactor Physics and Reactor Safety, September 24–29, 2007, Yalta, Crimea, UkraineSearch in Google Scholar

Received: 2014-01-31
Published Online: 2014-08-21
Published in Print: 2014-08-28

© 2014, Carl Hanser Verlag, München

Downloaded on 30.3.2024 from https://www.degruyter.com/document/doi/10.3139/124.110461/pdf
Scroll to top button