Accessible Requires Authentication Published by De Gruyter June 26, 2015

The ultimate response guideline simulation and analysis by using TRACE for Lungmen ABWR nuclear power plant

Simulation und Analyse der Ultimate Response Guideline (URG) mit Hilfe des TRACE-Rechencodes für das Lungmen ABWR Kernkraftwerk
H.-T. Lin, S.-M. Yang, J.-R. Wang, S.-W. Chen and C. Shih
From the journal Kerntechnik


In this research, the TRACE/SNAP model of Lungmen ABWR nuclear power plant (NPP) has been established for the simulation and analysis of ultimate response guideline (URG). The main actions of URG are depressurization and low pressure water injection of reactor and containment venting. This research focuses to assess the URG utility of Lungmen NPP under Fukushima-like conditions. This study consists of three steps. The first step is the establishment of Lungmen NPP TRACE/SNAP model. In order to evaluate the system response of TRACE/SNAP model, FSAR data (MSIV closure and loss of feedwater flow transient) were used to compare with the results of TRACE. The second step is the URG simulation and analysis under Fukushima-like conditions by using Lungmen NPP TRACE/SNAP model. In this step, the no URG case was also performed in order to evaluate the URG effectiveness of Lungmen NPP. In order to confirm the mechanical property and integrity of fuel rods, the final step is FRAPTRAN analysis. According to TRACE analysis results, the URG can keep the peak cladding temperature (PCT) below the criteria 1 088.7 K under Fukushima-like conditions which indicates that Lungmen NPP can be controlled in a safe situation. Nevertheless, if Lungmen NPP does not perform the URG under Fukushima-like conditions, the water level may drop lower than TAF after 1 100 s which means a safety issue about the fuel rods may be generated. The analysis results of FRAPTRAN also indicate the integrity of fuel rods cannot be kept under the above conditions.


In diesem Beitrag wurde das TRACE/SNAP-Modell des in Bau befindlichen Kernkraftwerks Lungmen (2 Blöcke des Typs Advanced Boiling Water Reactor (ABWR)) in Taiwan für die Simulation und Analyse der Ultimate Response Guideline (URG) verwendet. Die wichtigsten Maßnahmen der URG sind Druckentlastung und Niederdruck-Einspeisesystem des Reaktors und die Containment Entlüftung. Schwerpunkt dieser Arbeit ist die Bewertung der URG des Lungmen-Kernkraftwerks (KKW) unter Fukushima-ähnlichen Bedingungen. Der erste Schritt ist dabei die Etablierung des Lungmen NPP TRACE/SNAP-Modells. Zur Bewertung der Systemrückmeldung wurden FSAR-Daten zum Vergleich mit den Ergebnissen des Thermohydraulikcodes TRACE verwendet. Der zweite Schritt ist die URG Simulation und Analyse unter Fukushima-ähnlichen Bedingungen mit Hilfe des Lungmen NPP TRACE/SNAP-Modells. In diesem Schritt wurde auch der „no URG“ Fall behandelt um die URG-Leistungsfähigkeit des Lungmen-KKW bewerten zu können. Zur Bestätigung der mechanischen Eigenschaften und Integrität der Brennelemente, wird im letzten Schritt eine FRAPTRAN-Analyse durchgeführt. Nach den Ergebnissen der TRACE-Analyse kann die URG die maximale Hüllrohrtemperatur (PCT) unter 1 088.7 K halten unter Fukushima-ähnlichen Bedingungen. Dies zeigt, dass das Lungmen-KKW sicher betrieben werden kann. Die Ergebnisse der FRAPTRAN-Analyse zeigen auch, dass die Integrität der Brennelemente unter diesen Bedingungen nicht gehalten werden kann.


1 Taiwan Power Company: Lungmen nuclear power plant ultimate response guideline, No. 1451, 2014 Search in Google Scholar

2 Liang, K. S.; Chiang, S. C.; Hsu, Y. F.; Young, H. J.; Pei, B. S.; Wang, L. C.: The ultimate emergency measures to secure a NPP under an accidental condition with no designed power or water supply. Nuclear Engineering and Design253 (2012) 25926810.1016/j.nucengdes.2012.08.022 Search in Google Scholar

3 Liu, K.H.; Hwang, S.L.: Human performance evaluation: The procedures of ultimate response guideline for nuclear power plants. Nuclear Engineering and Design253 (2012) 259268 Search in Google Scholar

4 U.S.NRC: TRACE V5.840 user’s manual, 2014 Search in Google Scholar

5 U.S.NRC: TRACE V5.0 assessment manual, 2010 Search in Google Scholar

6 Mascari, F.; Vella, G.; Woods, B. G.; Welter, K.; Pottorf, J.; Young, E.; Adorni, M.; D'auria, F.: Sensitivity analysis of the MASLWR helical coil steam generator using TRACE. Nuclear Engineering and Design241 (2011) 1137114410.1016/j.nucengdes.2010.05.002 Search in Google Scholar

7 Freixa, J.; Manera, A.: Verification of a TRACE EPRTM model on the basis of a scaling calculation of an SBLOCA ROSA test. Nuclear Engineering and Design241 (2011) 88889610.1016/j.nucengdes.2010.12.016 Search in Google Scholar

8 Nikitin, K.; Manera, A.: Analysis of an ADS spurious opening event at a BWR/6 by means of the TRACE code. Nuclear Engineering and Design241 (2011) 2240224710.1016/j.nucengdes.2011.03.021 Search in Google Scholar

9 Berar, O.A.; Prosek, A.; Mavko, B.: RELAP5 and TRACE assessment of the Achilles natural reflood experiment. Nuclear Engineering and Design261 (2013) 30631610.1016/j.nucengdes.2013.05.007 Search in Google Scholar

10 Gajev, I.; Ma, W.; Kozlowski, T.: Sensitivity analysis of input uncertain parameters on BWR stability using TRACE/PARCS. Annals of Nuclear Energy67 (2014) 495810.1016/j.anucene.2013.10.016 Search in Google Scholar

11 Jimenez, G.; Queral, C.; Rebollo-Mena, M. J.; Martinez-Murillo, J. C.; Lopez-Alonso, E.: Analysis of the operator action and the single failure criteria in a SGTR sequence using best estimate assumptions with TRACE 5.0. Annals of Nuclear Energy58 (2013) 16117710.1016/j.anucene.2013.02.023 Search in Google Scholar

12 Montero-Mayorga, J.; Queral, C.; Gonzalez-Cadelo, J.: Effects of delayed RCP trip during SBLOCA in PWR. Annals of Nuclear Energy63 (2014) 10712510.1016/j.anucene.2013.06.030 Search in Google Scholar

13 Geelhood, K. J.; Luscher, W. G.; Beyer, C. E.; Cuta, J. M.: FRAPTRAN 1.4: a computer code for the transient analysis of oxide fuel rods. NUREG/CR-7023, Vol. 1, 2011 Search in Google Scholar

14 Taiwan Power Company: Final Safety Analysis Report for Lungmen Nuclear Power Station Units 1&2 (FSAR), 2007 Search in Google Scholar

15 Wang, J. R.; Lin, H. T.; Cheng, Y. H.; Wang, W. C.; Shih, C.: TRACE modeling and its verification using Maanshan PWR start-up tests. Annals of Nuclear Energy36 (2009) 52753610.1016/j.anucene.2008.12.017 Search in Google Scholar

16 Chen, C. H.; Wang, J. R.; Lin, H. T.; Shih, C.: ATWS analysis for Maanshan PWR using TRACE/SNAP code. Annals of Nuclear Energy72 (2014) 11010.1016/j.anucene.2014.04.025 Search in Google Scholar

17 Lin, H. T.; Wang, J. R.; Shih, C.: The development and assessment of TRACE model for Lungmen ABWR. Kerntechnik76 (2011) 20521510.3139/124.110153 Search in Google Scholar

18 Lin, H. T.; Wang, J. R.; ChenH.C.; Shih, C.: The development and assessment of TRACE/PARCS model for Lungmen ABWR. Nuclear Engineering and Design273 (2014) 24125010.1016/j.nucengdes.2014.03.027 Search in Google Scholar

19 Chen, C. Y.; Shih, C.; Wang, J. R.; Lin, H. T.: Sensitivity study on the counter-current flow limitation in the DEG LBLOCA with the TRACE code. Annals of Nuclear Energy57 (2013) 12112910.1016/j.anucene.2013.01.025 Search in Google Scholar

20 Chen, C. Y.; Shih, C.; Wang, J. R.: The alternate mitigation strategies on the extreme event of the LOCA and the SBO with the TRACE Chinshan BWR4 model. Nuclear Engineering and Design256 (2013) 33234010.1016/j.nucengdes.2012.08.029 Search in Google Scholar

21 Kao, L. S.; Wang, J. R.; YuannR.Y.; Tung, W. H.; Jing, J. A.; Lin, C. T.: Parallel calculations and verifications of limiting transient analyses for Lungmen nuclear power plant. INER report, INER-A1609R, Institute of Nuclear Energy Research Atomic Energy Council, R.O.C., 2008 Search in Google Scholar

22 Taiwan Power Company: Lungmen nuclear power station startup test procedure – one RIP trip test, STP-28A-HP, 2008 Search in Google Scholar

23 Taiwan Power Company: Lungmen nuclear power station startup test procedure – three RIPs trip test, STP-28B-HP, 2008 Search in Google Scholar

24 Taiwan Power Company: Lungmen nuclear power station startup test procedure- reactor full isolation, STP-32-HP, 2008 Search in Google Scholar

25 Wang, J. R.; Feng, T. S.; Lin, H. T.; Shih, C.: Analysis of loss of feedwater heater transients for Lungmen ABWR by TRACE/PARCS. NUREG report, NUREG/IA-0429, 2013 Search in Google Scholar

26 U.S.NRC: Standard review plan, NUREG-0800, 2007 Search in Google Scholar

27 U.S.NRC: 10CFR50.46c, ML110970044, 2011 Search in Google Scholar

Received: 2015-01-29
Published Online: 2015-06-26
Published in Print: 2015-07-25

© 2015, Carl Hanser Verlag, München