Accessible Requires Authentication Published by De Gruyter June 26, 2015

Neutronic performance of (ReprocessedU/Th)O2 fuel in CANDU 6 reactor

Neutronenverhalten von (wiederaufgearbeitetU/Th)O2-Brennstoff in CANDU 6-Reaktoren
Z. Gholamzadeh, S. M. Mirvakili and S. A. H. Feghhi
From the journal Kerntechnik

Abstract

Utilization of thorium-based fuel in different reactors has been under investigation for several decades. In fact, excellent breeding features, rather flattened distribution of power as well as proliferation resistance of such fuel cycle draws the attention towards utilization of this type of fuel in nuclear power technology. In the present study, the neutronic performance of a typical thorium core loading is addressed. In this configuration, a mixed uranium and thorium oxide is loaded in CANDU 6 reactor. The obtained results determine a total peaking factor of 2.73 for the proposed configuration. The values obtained for the β and the βeff are 332 and 303 pcm respectively. The core reactivity coefficients were more negative comparing the CANDU 6 loaded with natUO2. The initial fissile material loaded in the core increased by a factor of 1.5 after 730 GWd burn-up. The obtained burn-up results show the core reactivity variations were highly positive after 6 and 12 h shut down because of considerably high buildup of 233Pa after 1-year core operation at 2000 MW power.

Kurzfassung

Die Verwendung von Brennstoff auf Thorium-Basis in verschiedenen Reaktoren wird seit vielen Jahren untersucht. Die exzellenten Brutmerkmale, die eher flache Leistungsverteilung und die Proliferationsresistenz macht die Anwendung dieser Art von Brennstoff in der Kernenergiegewinnung interessant. Im vorliegenden Beitrag wird das Neutronenverhalten einer typischen Thorium-Beladung des Kerns untersucht. In dieser Konfiguration wird der CANDU 6-Reaktor mit einem Uran-Thoriumoxid-Gemisch beladen. Aus den erhaltenen Ergebnissen lässt sich ein Gesamt-Überhöhungsfaktor von 2.73 für die vorgeschlagene Konfiguration bestimmen. Die für β bzw. βeff erhaltenen Werte sind 332 bzw. 303 pcm. Die Reaktivitätskoeffizienten des Kerns waren mehr negativ beim CANDU 6 beladen mit natUO2. Die Menge des ursprünglich in den Kern geladenen Spaltmaterials erhöhte sich um einen Faktor 1.5 nach 730 GWd Abbrand. Die erhaltenen Abbrand-Ergebnisse zeigen, dass die Schwankungen der Kernreaktivität sehr positiv waren 6 bis 12 h nach Abschalten des Reaktors wegen des relativ hohen Aufbaus von 233Pa nach einem Betriebsjahr bei 2000 MW Leistung.


* Corresponding author: E-mail:

References

1 Anantharaman, K.; Shivakumar, V.; Saha, D.: Utilisation of thorium in reactors. J. of Nucl Mat.383 (2008) 11910.1016/j.jnucmat.2008.08.042 Search in Google Scholar

2 Sahin, S.; Yıldız, K.; Acır, A.: Power flattening in the fuel bundle of a CANDU reactor. Nucl Eng and Des.232 (2007) 710.1016/j.nucengdes.2004.04.004 Search in Google Scholar

3 Sahin, S.; Sahin, H. M.; Alkan, M.; Yıldız, K.: An assessment of thorium and spent LWR-fuel utilization potential in CANDU reactors. Energ Conv and Manage.45 (2004) 106710.1016/j.enconman.2003.08.002 Search in Google Scholar

4 Sahin, S.; Yıldız, K.; Sahin, H. M.; Acır, A.: Investigation of CANDU reactors as a thorium burner. Energ Conv and Manage.47 (2006) 166110.1016/j.enconman.2005.10.013 Search in Google Scholar

5 Ma, X. B.; Chen, Y. X.; Quan, G. P.; Wang, L. Z.; Lu, D. G.: Neutronics analysis of the power flattening and minor actinides burning in a thorium-based fusion–fission hybrid reactor blanket. Fus Eng and Des.87 (2012) 163310.1016/j.fusengdes.2012.06.010 Search in Google Scholar

6 Okawa, T.; Nakayama, S.; Sekimoto, H.: Design study on power flattening to sodium cooled large-scale CANDLE burning core with using thorium fuel. Energ Conv and Manage.53 (2012) 18210.1016/j.enconman.2011.06.006 Search in Google Scholar

7 Yapıcıa, H.; Ubeylib, M.; Yalcın, S.: Neutronic analysis of PROMETHEUS reactor fueled with various compounds of thorium and uranium. Annal of Nucl Energ29 (2002) 187110.1016/S0306-4549(02)00016-6 Search in Google Scholar

8 Jagannathan, V.; Jain, R. P.; Krishnani, P. D.; Pal, U.; Karthikeyan, R.: An optimal U–Th mix reactor to maximize fission nuclear power. In: Proceedings of the International Conference on the Physics of Nuclear Science and Technology, October 5–8, 1998, The Radisson Hotel, Islandia, Long Island, NY, USA. p. 323. Search in Google Scholar

9 Jagannathan, V.; Lawande, S. V.: A thorium breeder concept for optimal energy extraction from uranium and thorium. In: Proceedings of IAEA TCM on Fuel Cycle Options in LWRs & HWRs, at Victoria, Canada, April 28–May 1, 1998, IAEA-TECDOC-1122, 1999. Search in Google Scholar

10 Jagannathan, V.; Pal, U.; KarthikeyanR.: A search into the optimal U–Pu–Th fuel cycle options for the next millennium. In: Proceedings of PHYSOR’2000 international conference–ANS international topical meeting on advances in reactor physics and mathematics and computation into the next millennium, Session XV.C on advanced reactor concepts and design, May 7–11, 2000, Pittsburgh, Pennsylvania, USA Search in Google Scholar

11 Núñez-Carrera, A.; François, J. L.; Martín-del-Campo, C.: Espinosa-Paredes, G.: Design of a boiling water reactor core based on an integrated blanket–seed thorium–uranium concept. Annal of Nucl Energ.32 (2005) 55810.1016/j.anucene.2004.12.001 Search in Google Scholar

12 Lahoda, E. J.: Costs for manufacturing thorium–uranium dioxide fuels for light water reactors. Nucl. Technol.147 (2004) 102 Search in Google Scholar

13 Lombardi, C.; Luzzi, L.; Padovani, E.; Vettraino, F.: 2008. Thoria and inert matrix fuels for a sustainable nuclear power. Progress in Nucl Energ.50 (2008) 94410.1016/j.pnucene.2008.03.006 Search in Google Scholar

14 Rose, S. J.; Wilson, J. N.; Capellan, N.; David, S.; Guillemin, P.; Ivanov, E.; Meplan, O.; Nuttin, A.; Siem, S.: Minimization of actinide waste by multi-recycling of thoriated fuels in the EPR reactor, Annal of Nucl Energ. 38 (2011) 261910.1016/j.anucene.2011.06.029 Search in Google Scholar

15 Fensin, M. L.: Development of the MCNPX depletion capability: A monte carlo depletion method that automates the Coupling between MCNPX and CINDER90 for high fidelity burn up calculations. Florida University, (2008). Search in Google Scholar

16 Chan, P.: Evolution of ACR Physics from CANDU 6, AECL. (2002). Search in Google Scholar

17 Sahin, S.; Yalc, S.; Yıldız, K.; Sahin, H. M.; Acır, A.; Sahin, N.: CANDU reactor as minor actinide/thorium burner with uniform power density in the fuel bundle. Annal of Nucl Energ.35 (2008) 69010.1016/j.anucene.2007.08.003 Search in Google Scholar

Received: 2015-02-10
Published Online: 2015-06-26
Published in Print: 2015-07-25

© 2015, Carl Hanser Verlag, München