Accessible Requires Authentication Published by De Gruyter June 26, 2015

Nondestructive radioactive tracer technique in performance evaluation of organic based ion exchange materials Purolite NRW-4000 and Duolite A-378

Zerstörungsfreies Verfahren mit radioaktiven Tracern bei der Leistungsbewertung der Ionenaustauschharze Purolite NRW-4000 and Duolite A-378
P. U. Singare
From the journal Kerntechnik

Abstract

The present paper demonstrates nondestructive application of the 131I and 82Br radioisotopes in performance evaluation of organic base anion exchange resins Purolite NRW-4000 and Duolite A-378. The evaluation was based on kinetics of iodide and bromide ion-isotopic exchange reactions taking place between the external ionic solution and the resin surface. It was observed that at a constant temperature of 35.0 °C when the concentration of bromide ions in solution increases from 0.001 mol/L to 0.004 mol/L, the specific reaction rate values for bromide ion-isotopic exchange increases from 0.228 to 0.266 min−1 using Purolite NRW-4000 resins and from 0.160 to 0.185 min−1 using Duolite A-378 resins. Also it was observed that under the same experimental conditions, the percentage of bromide ions exchanged increases from 60.67 % to 67.00 % using Purolite NRW-4000 resin, while for Duolite A-378 resin it increases from 49.30 % to 52.00%. The identical trend was observed for the two resins during iodide ion-isotopic exchange reaction. The overall results indicate that under identical experimental conditions, as compared to Duolite A-378 resins, Purolite NRW-4000 resins shows superior performance. It is expected that the present nondestructive radiotracer technique can be extended further for characterization of series of nuclear as well as non-nuclear grade ion exchange resins. The results of such study will be immensely useful in proper selection of the ion exchange resins in various industrial applications.

Kurzfassung

Der vorliegende Betrag zeigt die zerstörungsfreie Anwendung von 131I und 82Br bei der Bewertung der Leistungsfähigkeit der Ionenaustauschharze Purolite NRW-4000 and Duolite A-378. Die Bewertung basiert auf der Kinetik der Iodid- und Bromid-Ionenaustausch-Reaktionen zwischen der externen Ionenlösung und der Harzoberfläche. Es wurde beobachtet, dass bei einer konstanten Temperatur von 35.0 °C, wenn die Konzentration der Bromidionen in Lösung von 0.001 mol/L auf 0.004 mol/L ansteigt, die Werte der spezifischen Reaktionsraten für den Bromidionenaustausch von 0.228 auf 0.266 min−1 ansteigen bei Verwendung von Purolite NRW-4000 Harz und von 0.160 auf 0.185 min−;1 bei Verwendung von Duolite A-378 Harz. Unter den gleichen experimentellen Bedingungen wurde auch beobachtet, dass der Prozentsatz der ausgetauschten Bromidionen von 60.67 % auf 67.00 % ansteigt bei Verwendung von Purolite NRW-4000 Harz, bei Verwendung von Duolite A-378 Harz von 49.30 % auf 52.00 %. Der gleiche Trend wurde für die beiden Harze beobachtet während der Iodid-Ionenaustausch-Reaktion. Die Ergebnisse zeigen, dass unter identischen experimentellen Bedingungen Purolite NRW-4000 Harz eine bessere Leistungs-fähigkeit hat als Duolite A-378 Harz. Es wird davon ausgegangen, dass das derzeitige zerstörungsfreie Radiotracer-Verfahren erweitert werden kann zur Bestimmung der Eigenschaften von hoch-reinen Ionenaustauschharzen. Die Ergebnisse solcher Untersuchungen wären von großem Nutzen bei der Auswahl geeigneter Ionenaustauschharze für verschiedene industrielle Anwendungen.

References

1 Application of Ion Exchange Processes For the Treatment of Radioactive Waste and Management of Spent Ion Exchangers. Technical Reports Series No. 408, International Atomic Energy Agency, Vienna, (2002) Search in Google Scholar

2 Samanta, S. K.; Ramaswamy, M.; Misra, B. M.: Studies on cesium uptake by phenolic resins. Sep. Sci. Technol.27 (1992) 25526710.1080/01496399208018877 Search in Google Scholar

3 Samanta, S. K.; Ramaswamy, M.; Sen, P.; Varadarajan, N.; Singh, R. K.: Removal of radiocesium from alkaline IL waste. Natl Symp. On Management of Radioactive and Toxic Wastes (SMART-93), Kalpakkam, 1993, Bhabha Atomic Research Centre, Bombay5658 (1993) Search in Google Scholar

4 Samanta, S. K.; Theyyunni, T. K.; Misra, B. M.: Column behavior of a resorcinol-formaldehyde polycondensate resin for radiocesium removal from simulated solution. J. Nucl. Sci. Technol.32 (1995) 42542910.1080/18811248.1995.9731727 Search in Google Scholar

5 Kulkarni, Y.; Samanta, S. K.; Bakre, S. Y.; Raj, K.; Kumra, M. S.: Process for treatment of intermediate level radioactive waste based on radionuclide separation. Waste Management’96 (Proc. Int. Symp Tucson, AZ, 1996), Arizona Board of Regents, Phoenix, AZ (1996) (CD-ROM) Search in Google Scholar

6 Bray, L. A.; Elovich, R. J.; Carson, K. J.: Cesium Recovery using Savannah River Laboratory Resorcinol-formaldehyde Ion Exchange Resin. Rep. PNL-7273, Pacific Northwest Lab., Richland, WA (1990) 10.2172/7110253 Search in Google Scholar

7 Kumaresan, R.; Sabharwal, K. N.; Srinivasan, T. G.; Vasudeva Rao, P. R.; Dhekane, G.: Evaluation of New Anion Exchange Resins for Plutonium Processing, Solvent Extraction and Ion Exchange24 (2006) 58960210.1080/07366290600762512 Search in Google Scholar

8 Harland, C. E.: Ion Exchange. ISBN: 978-0-85186-484-6, eISBN: 978-1-84755-118-4, 2nd Edition, RSC Publishing, UK, pp. 4989, 1994) 10.1039/9781847551184-00049 Search in Google Scholar

9 Patel, S. A.; Shah, B. S.; Patel, R. M.; Patel, P. M.: Synthesis, Characterization and Ion exchange Properties of Acrylic Copolymers Derived from 8-Quinolinyl Methacrylate. Iranian Polymer Journal13 (2004) 445453 Search in Google Scholar

10 Liu, H.; Zhang, S.; Nie, S.; Zhao, X.; Sun, X.; Yang, X.; Pan, W.: Preparation and characterization of a novel pH-sensitive ion exchange resin. Chem. Pharm. Bull. (Tokyo)53 (2005) 63163310.1248/cpb.53.631 Search in Google Scholar

11 Masram, D. T.; Kariya, K. P.; Bhave, N. S.: A Novel Resin Sef: Synthesis, Characterization and Ion-Exchange Properties. Applied Science Segment: 1 (1) APS/1513 (2010) Search in Google Scholar

12 Sood, D. D.; Reddy, A. V. R.; Ramamoorthy, N.: Applications of Radioisotopes in Agriculture and Industry. In: Fundamentals of Radiochemistry, Indian Association of Nuclear Chemists and Allied Scientists (IANCAS), pp. 289297, January 2004 Search in Google Scholar

13 Radiotracer Applications in Industry – A Guidebook, Technical Reports Series No. 423, IAEA, Vienna (2004) Search in Google Scholar

14 Clark, M. W.; Harrison, J. J.; Payne, T. E.: The pH-dependence and reversibility of uranium and thorium binding on a modified bauxite refinery residue using isotopic exchange techniques. Journal of Colloid and Interface Science356 (2011) 69970510.1016/j.jcis.2011.01.068 Search in Google Scholar

15 Dagadu, C. P. K.; Akaho, E. H. K.; Danso, K. A.; Stegowski, Z.; Furman, L.: Radiotracer investigation in gold leaching tanks. Applied Radiation and Isotopes70 (2012) 15616110.1016/j.apradiso.2011.09.003 Search in Google Scholar

16 Koron, N.; Bratkic, A.; Ribeiro Guevara, S.; Vahcic, M.; Horvat, M.: Mercury methylation and reduction potentials in marine water: An improved methodology using 197Hg radiotracer. Applied Radiation and Isotopes70 (2012) 465010.1016/j.apradiso.2011.07.015 Search in Google Scholar

17 Meng, X.; Weiguo, L.: An improved method of ion exchange for nitrogen isotope analysis of water nitrate. Analytica Chimica Acta686 (2011) 10711410.1016/j.aca.2010.11.051 Search in Google Scholar

18 Randriamanantsoa, L.; Morel, C.; Rabeharisoa, L.; Douzet, J. M.; Jansa, J.; Frossard, E.: Can the isotopic exchange kinetic method be used in soils with a very low water extractable phosphate content and a high sorbing capacity for phosphate ions?Geoderma200 (2013) 12012910.1016/j.geoderma.2013.01.019 Search in Google Scholar

19 Mochizuki, K.; Munakata, K.; Wajima, T.; Hara, K.; Wada, K.; Shinozaki, T.; Takeishi, T.; Knitter, R.; Bekris, N.; Okuno, K.: Study of isotope exchange reactions on ceramic breeder materials deposited with noble metal. Fusion Engineering and Design85 (2010) 1185118910.1016/j.fusengdes.2010.02.035 Search in Google Scholar

20 Li, Z.; Chansaenpak, K.; Liu, S.; Wade, C. R.; Conti, P. S.; Gabbaï, F. P.: Harvesting 18F-fluoride ions in water via direct 18F–19F isotopic exchange: radiofluorination of zwitterionic aryltrifluoroborates and in vivo stability studies. MedChemComm3 (2012) 1305130810.1039/c2md20105d Search in Google Scholar

21 Singare, P. U.; Lokhande, R. S.: Studies on Ion-Isotopic Exchange Reactions Using Nuclear Grade Ion Exchange Resins. Ionics18 (2012) 35135710.1007/s11581-011-0645-0 Search in Google Scholar

22 Lokhande, R. S.; Singare, P. U.: Comparative Study on Ion-Isotopic Exchange Reaction Kinetics by Application of Tracer Technique. Radiochim. Acta95 (2007) 17317610.1524/ract.2007.95.3.173 Search in Google Scholar

23 Lokhande, R. S.; Singare, P. U.; Patil, V. V.: Application of Radioactive Tracer Technique to Study the Kinetics and Mechanism of Reversible Ion-Isotopic Exchange Reaction using Strongly Basic Anion Exchange Resin Indion-850. Radiochemistry50 (2008) 63864110.1134/S1066362208060106 Search in Google Scholar

24 Lokhande, R. S.; Singare, P. U.: Comparative Study on Iodide and Bromide Ion-Isotopic Exchange Reactions by Application of Radioactive Tracer Technique. J. Porous Matter15 (2008) 25325810.1007/s10934-006-9077-z Search in Google Scholar

25 Lokhande, R. S.; Singare, P. U.; Dole, M. H.: Comparative Study on Bromide and Iodide Ion-Isotopic Exchange Reactions Using Strongly Basic Anion Exchange Resin Duolite A-113. J. Nuclear and Radiochemical Sciences7 (2006) 293210.14494/jnrs2000.7.2_29 Search in Google Scholar

26 Heumann, K. G.; Baier, K.: Chloride distribution coefficient on strongly basic anion-exchange resin: Dependence on co-ion in alkali fluoride solutions. Chromatographia15 (1982) 70170310.1007/BF02261888 Search in Google Scholar

27 Singare, P. U.; Lokhande, R. S.; Patil, V. V.; Prabhavalkar, T. S.; Tiwari, S. R. D.: Study on Distribution coefficient of Bromide ions from Aqueous Solution on Ion Exchange Resins Indion-850, Indion-860 and Indion FF-IP. European J. Chemistry1 (2010) 474910.5155/eurjchem.1.1.47-49.7 Search in Google Scholar

28 Adachi, S.; Mizuno, T.; Matsuno, R.: Concentration dependence of the distribution Coefficient of maltooligosaccharides on a cation-exchange resin. J. Chromatogr. A708 (1995) 17718310.1016/0021-9673(95)00405-C Search in Google Scholar

29 Shuji, A.; Takcshi, M.; Ryuichi, M.: Temperature Dependence of the Distribution Coefficient of Maltooligosaccharides on Cation-exchange Resin in Na+ Form. Biosci. Biotechnol. Biochem.60 (1996) 33834010.1271/bbb.60.338 Search in Google Scholar

Received: 2015-02-15
Published Online: 2015-06-26
Published in Print: 2015-07-25

© 2015, Carl Hanser Verlag, München