Abstract
Many upcoming new generation reactors employ natural circulation for heat transfer in normal mode of operation. Natural circulation systems are simpler and safer than their forced circulation counterparts. However, these systems are prone to flow instability which are undesirable due to several reasons. In the present work, a rectangular glass loop, wherein cooler is just above the heater, has been considered for experimental and numerical investigation at atmospheric pressure. Heat addition from room conditions has been studied to understand the natural circulation loop dynamics, checking the possibility of occurrence of instability with the new orientation of the heater and the cooler. Experiments were performed at different power levels and coolant flow rates. CFD analyses were performed for all the cases investigated experimentally using the commercial CFD code ANSYS FLUENT 14.0. No instability was observed during the experiments and none during the simulations done for the duration of the experiments.
Kurzfassung
Viele Reaktoren der neuen Generation nutzen natürliche Zirkulation zur Wärmeübertragung im Normalbetrieb. Natürliche Zirkulationssysteme sind einfacher aufgebaut und sollen sicherer als ihre Pendants mit Zwangsumlauf sein. Allerdings sind sie anfällig für Strömungsinstabilitäten, die aus verschiedenen Gründen unerwünscht sind. In der vorliegenden Arbeit wurde eine rechteckige Glasschleife, bei der sich der Kühler knapp oberhalb des Heizers befindet, für experimentelle und numerische Untersuchungen bei Atmosphärendruck verwendet. Dabei wurde die Wärmezufuhr aus dem Raum untersucht, um die Dynamik der natürlichen Zirkulationsschleife zu verstehen und den Einfluss der vertikalen Anordung von Heizer und Kühler auf die Entstehung von Instabilitäten untersucht. Es wurden Experimente mit verschiedenen Leistungsstufen und Kühlmitteldurchflussmengen durchgeführt. Für alle untersuchten Fälle wurden CFD-Analysen mit dem kommerziellen CFD-Code ANSYS FLUENT 14.0 erstellt. Dabei wurden Instabilitäten weder während der Experimentdauer noch während der Berechnungen beobachtet.
References
1 Vijayan, P. K.; Nayak, A. K.; Saha, D.; Gartia, M. R.: Effect of Loop Diameter on the Steady State and Stability Behaviour of Single-Phase and Two-Phase Natural Circulation Loops. Science and Technology of Nuclear Installations Volume, Article ID 672704, 17 pages, 200810.1155/2008/672704Search in Google Scholar
2 Gartia, M. R.; Pilkhwal, D. S.; Vijayan, P. K.; Saha, D.: Analysis of Metastable Regimes in a Parallel Channel Single-Phase Natural Circulation System with RELAP5/MOD3.2. International Journal of Thermal Sciences46 (2007) 1064–107410.1016/j.ijthermalsci.2006.11.016Search in Google Scholar
3 Welander, P.: On the oscillatory instability of a differentially heated fluid loop. Journal of Fluid Mechanics29 (1967) 17–3010.1017/S0022112067000606Search in Google Scholar
4 Creveling, H. F.; De Paz, J. F.; Baladi, J. Y.; Schoenhals, R. J.: Stability characteristics of a single-phase free convection loop. Journal of Fluid Mechanics67 (1975) 65–8410.1017/S0022112075000171Search in Google Scholar
5 Zvirin, Y.: A review of natural circulation loops in PWR and other systems. Nuclear Engineering Design67 (1981) 203–22510.1016/0029-5493(82)90142-XSearch in Google Scholar
6 Chen, K.: On the oscillatory instability of closed loop thermosyphons. Journal of Heat Transfer107 (1985) 826–83210.1115/1.3247510Search in Google Scholar
7 Vijayan, P. K.; Austregesilo, H.: Scaling laws for single-phase natural circulation loops. Nuclear Engineering Design152 (1994) 331–34710.1016/0029-5493(94)90095-7Search in Google Scholar
8 Pilkhwal, D. S.; Ambrosini, W.; Forgione, N.; Vijayan, P. K.; Saha, D.; Ferreri, J. C.: Analysis of the unstable behaviour of a single-phase natural circulation loop with one-dimensional and computational fluid-dynamic models. Annals of Nuclear Energy34 (2007) 339–35510.1016/j.anucene.2007.01.012Search in Google Scholar
9 Vijayan, P. K.; Sharma, M.; Saha, D.: Steady-state and stability characteristics of a single phase natural circulation in a rectangular loop with different heater and cooler orientations. Experimental Thermal and Fluid Science31 (2007) 925–94510.1016/j.expthermflusci.2006.10.003Search in Google Scholar
10 Vijayan, P. K.; Thakuria, S. B.: Simulation of Single-Phase Natural Circulation Instability in a Rectangular Loop using CFD Code Phoenics. Proceedings of the 37th National and 4th International Conference on Fluid Mechanics and Fluid Power, December 16–18, IIT Madras, Chennai, India, 2010Search in Google Scholar
11 Kumar, N.; Nayak, A. K.; Vijayan, P. K.; Vaze, K. K.: Modeling the Flow Characteristics during Start-Up of Natural Circulation Systems from Rest State. BARC Research Article, Issue No. 336, Jan–Feb, 2014Search in Google Scholar
12 Kumar, N.; Iyer, K. N.; Doshi, J. B.; Vijayan, P. K.: Investigations on single phase natural circulation loop dynamics Part-1: Model for simulating start-up from rest. Progress in Nuclear Energy76 (2014) 148–15910.1016/j.pnucene.2014.05.017Search in Google Scholar
13 Ansys Fluent Inc.Ansys Fluent 14.0 User's Guide, 2013Search in Google Scholar
14 Verissimo, G. L.; de Lourdes, M. M.; Faccini, J. L. H.: Numerical Simulation of a Natural Circulation Loop. International Nuclear Atlantic Conference Belo Horizonte, MG, Brazil, October 24–28, 2011Search in Google Scholar
15 Tarantino, M.; de Grandis, S.; Benamati, G.; Oriolo, F.: Natural circulation in a liquid metal one-dimensional loop. Journal of Nuclear Materials376 (2008) 409–41410.1016/j.jnucmat.2008.02.080Search in Google Scholar
© 2018, Carl Hanser Verlag, München