Accessible Unlicensed Requires Authentication Published by De Gruyter April 18, 2017

The effects of applying silicon carbide coating on core reactivity of pebble-bed HTR in water ingress accident

Der Einfluss einer Siliziumkarbidbeschichtung auf die Reaktivität des Kerns eines Kugelhaufen HTR bei einem Unfall durch Wassereinbruch
Zuhair, Suwoto, T. Setiadipura and Z. Su’ud
From the journal Kerntechnik

Abstract

Graphite is used as the moderator, fuel barrier material, and core structure in High Temperature Reactors (HTRs). However, despite its good thermal and mechanical properties below the radiation and high temperatures, it cannot avoid corrosion as a consequence of an accident of water/air ingress. Degradation of graphite as a main HTR material and the formation of dangerous CO gas is a serious problem in HTR safety. One of the several steps that can be adopted to avoid or prevent the corrosion of graphite by the water/air ingress is the application of a thin layer of silicon carbide (SiC) on the surface of the fuel element. This study investigates the effect of applying SiC coating on the fuel surfaces of pebble-bed HTR in water ingress accident from the reactivity points of view. A series of reactivity calculations were done with the Monte Carlo transport code MCNPX and continuous energy nuclear data library ENDF/B-VII at temperature of 1 200 K. Three options of UO2, PuO2, and ThO2/UO2 fuel kernel were considered to obtain the inter comparison of the core reactivity of pebble-bed HTR in conditions of water/air ingress accident. The calculation results indicated that the UO2-fueled pebble-bed HTR reactivity was slightly reduced and relatively more decreased when the thickness of the SiC coating increased. The reactivity characteristic of ThO2/UO2-fueled pebble-bed HTR showed a similar trend to that of UO2, but did not show reactivity peak caused by water ingress. In contrast with UO2- and ThO2-fueled pebble-bed HTR, although the reactivity of PuO2-fueled pebble-bed HTR was the lowest, its characteristics showed a very high reactivity peak (0.33 Δk/k) and this introduction of positive reactivity is difficult to control. SiC coating on the surface of the plutonium fuel pebble has no significant impact. From the comparison between reactivity characteristics of uranium, thorium and plutonium cores with 0.10 cm thick SiC coating, it can be concluded that the effect of SiC coating on core reactivity in water ingress accident is more dominant for the pebble-bed HTR fuelled with thorium than those with uranium and plutonium fuels.

Kurzfassung

Graphit wird als Moderator, Barrierematerial und Kernstruktur in Hochtemperaturreaktoren (HTRs) verwendet. Trotz seiner guten thermischen und mechanischen Eigenschaften kann Korrosion als Folge eines Unfalls durch Wassereinbruch nicht vermieden werden. Degradation von Graphit als Hauptmaterial beim HTR und die Bildung von gefährlichem Kohlenmonoxid ist ein ernstes Problem bei der HTR Sicherheit. Zur Vermeidung der Korrosion von Graphit kann eine dünne Schicht von Siliziumkarbid (SiC) auf die Oberfläche der Brennelemente aufgebracht werden. Dieser Beitrag untersucht die Anwendung einer Siliziumkarbidbeschichtung auf die Brennelementoberflächen eines Kugelhaufen HTR bei einem Unfall durch Wassereinbruch im Hinblick auf die Reaktivität. Eine Reihe von Reaktivitätsberechnungen wurden mit Hilfe des Monte Carlo Neutronentransport Codes MCNPX und der Kerndatenbibliothek ENDF/B-VII bei Temperaturen von 1 200 K durchgeführt. Drei Optionen von UO2, PuO2 und ThO2/UO2 Brennstoffkernen wurden für den Vergleich der Reaktivität von Kugelhaufen HTR bei einem Unfall durch Wassereinbruch betrachtet. Die Rechenergebnisse zeigen, dass die Reaktivität bei UO2 etwas reduziert und, bei wachsender SiC Beschichtung stärker reduziert wurde. Die Reaktivitätseigenschaften zeigen bei ThO2/UO2 einen ähnlichen Trend aber keinen Reaktivitätspeak infolge des Wassereinbruchs. Im Gegensatz dazu zeigt die Reaktivität von PuO2 Brennstoffkernen, obwohl sie am niedrigsten war, einen sehr hohen Reaktivitätspeak (0.33 Δk/k). SiC Beschichtung auf der Oberfläche der Plutonium Kugelhaufen hat keinen signifikanten Einfluss. Der Vergleich zwischen den Reaktivitätseigenschaften von Uranium-, Thorium- und Plutoniumkernen mit 0.10 cm dicker SiC Beschichtung zeigt, dass der Einfluss der Beschichtung auf die Reaktivität des Kerns bei einem Unfall durch Wassereinbruch bei einem Kugelhaufen HTR mit Thorium entscheidender ist als bei Uran- und Plutonium-Brennstoff.

References

1 Ohashi, H. et al.: A Small-Sized HTGR System Design for Multiple Heat Applications for Developing Countries. International Journal of Nuclear Energy2013 (2013) 118, Article ID 918567Search in Google Scholar

2 Generation IV International Forum (GIF): Technology Roadmap Update for Generation IV Nuclear Energy Systems. OECD Nuclear Energy Agency, January 2014Search in Google Scholar

3 Yang, X. et al.: Some Movement Mechanisms and Characteristics in Pebble Bed Reactor, Journal of Science and Technology of Nuclear Installations. Volume 2014, Article ID 820481 (2014) 110Search in Google Scholar

4 Trinuruk, P.; Obara, T.: Concept of Prismatic High Temperature Gas-cooled Reactor with SiC Coating on Graphite Structures. Annals on Nuclear Energy6 (2014) 43744510.1016/j.anucene.2013.08.019Search in Google Scholar

5 Hendricks, J. S.; McKinney, G. W. et al.: MCNPX 2.6.0 Extensions, LA-UR-08-2216, Los Alamos National Laboratory, 11 April 2008Search in Google Scholar

6 Chadwick, M. B.; Oblozinsky, P.; Herman, M. et al.: ENDF/B-VII: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology. Nuclear Data Sheets,107 (2006) 2931306010.1016/j.nds.2006.11.001Search in Google Scholar

7 Gerhards, E.: Abbrandmessung am HTR-Modul Reaktor, Forschungszentrum Jűlich (1993)Search in Google Scholar

8 Koster, A.; Matzner, H. D.; Nicholsi, D. R.: PBMR Design for the Future. Journal of Nuclear Engineering and Design222 (2003) 23124510.1016/S0029-5493(03)00029-3Search in Google Scholar

9 Dhandhang Purwadi, M.: Conceptual Design of Cogeneration Advanced Power Reactor System based RGTT. Proceedings of the 16th National Seminar of NPP Technology and Safety and Nuclear Facilities, Yogyakarta, 28 July 2010Search in Google Scholar

10 Haneklaus, N.: Transuranic Waste Incineration using High Temperature Pebble Bed Reactor (HT-PBRs). Physics Department, Ljubljana University, Ljubljana, December 2013Search in Google Scholar

11 Fujii, K. et al.: Improvement of the Oxidation Resistance of a Graphite Material by Compositionally Gradient SiC/C Layer. Journal of Nuclear Material203 (1993) 101610.1016/0022-3115(93)90424-WSearch in Google Scholar

12 Hosking, G.; Newton, T. D.: Proposed Benchmark Specification for an HTR Fuelled with Reactor Grade Plutonium. NEW/NSC/DOC (2003) 22, March 2005Search in Google Scholar

13 Galahom, A. A.; Bashter, I. I.; Aziz, M.: Neutronic Analysis and Validation of Boiling Water Reactor Core designed by MCNPX. Annals of Nuclear Energy76 (2015) 46146810.1016/j.anucene.2014.10.025Search in Google Scholar

14 Curbelo, J. P. et al.: Random Detailed Model for Probabilistic Neutronic Calculation in Test Reactor HTR-10. XVII-th Meeting of Computational Modeling, V-th Meeting Materials Science and Technology, Catholic University of Petropolis (UCP), Petropolis/RJ, Brazil, 15–17 October 2014Search in Google Scholar

15 Wang, M. J. et al.: Effects of Homogeneous Geometry Models in Simulating the Fuel Balls in HTR-10. Journal of Power and Energy Systems6 (2012) 39440110.1299/jpes.6.394Search in Google Scholar

16 Zuhair, Suwoto, Sumijanto: Analysis on the Reactivity of RGTT200 K's Core in Water Ingress Accident Scenario, Proceedings of the 19th National Seminar of NPP Technology and Safety and Nuclear Facilities, Yogyakarta, 24–25 September 2013Search in Google Scholar

Received: 2016-03-11
Published Online: 2017-04-18
Published in Print: 2017-03-16

© 2017, Carl Hanser Verlag, München