Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 18, 2017

Analysis of the optimal fuel composition for the Indonesian experimental power reactor

Analyse der optimalen Brennstoffzusammensetzung für den Indonesischen experimentellen Leistungsreaktor
P. H. Liem, T. M. Sembiring, B. Arbie and I. Subki
From the journal Kerntechnik

Abstract

The optimal fuel composition of the 10 MWth Experimental Power Reactor (RDE), to be built by the Indonesian National Nuclear Energy Agency (BATAN), is a very important design parameter since it will directly affect the fuel cost, new and spent fuel storage capacity, and other back-end environmental burden. The RDE is a very small sized pebble-bed high temperature gas-cooled reactor (HTGR) with low enriched uranium (LEU) UO2 TRISO fuel under multipass or once-through-then-out fueling scheme. A scoping study on fuel composition parameters, namely heavy metal (HM) loading per pebble and uranium enrichment is conducted. All burnup, criticality calculations and core equilibrium search are carried out by using BATAN-MPASS, a general in-core fuel management code for pebble bed HTGRs, featured with many automatic equilibrium searching options as well as thermal-hydraulic calculation capability. The RDE User Requirement Document issued by BATAN is used to derive the main core design parameters and constraints. The scoping study is conducted over uranium enrichment in the range of 10 to 20 w/o and HM loading in the range of 4 g to 10 g/pebble. Fissile loading per unit energy generated (kg/GWd) is taken as the objective function for the present scoping study. The analysis results show that the optimal HM loading is around 8 g/pebble. Under the constraint of 80 GWd/t fuel discharge burnup imposed by the technical specification, the uranium enrichment for the optimal HM loading is approximately 13 w/o.

Kurzfassung

Die optimale Brennstoffzusammensetzung des von der indonesischen National Nuclear Energy Agency (BATAN) geplanten 10 MWth experimentellen Leistungsreaktors (RDE) ist ein wichtiges Ausgestaltungsmerkmal, da dadurch direkt Brennstoffkosten, Lagerkapazitäten für neue und abgebrannte Brennelemente sowie Umweltbelastungen betroffen sind. Der RDE ist ein kleiner gasgekühlter Hochtemperatur-Reaktor (HTGR) mit niedrig angereichertem Uran (LEU) UO2 TRISO Brennstoff. Eine Voruntersuchung der Parameter der Brennstoffzusammensetzung, wie die Schwermetall-Beladung und die Urananreicherung eines Kugelbrennelements wurde durchgeführt. Alle Abbrand-, Kritikalitäts- und Gleichgewichtsberechnungen wurden mit Hilfe von BATAN-MPASS, einem Brennstoffmanagementcode für Kugelhaufenreaktoren durchgeführt. Das von BATAN ausgestellte Dokument für die RDE-Benutzeranforderungen wird verwendet um die wichtigsten Auslegungsparameter und ihre Beschränkungen abzuleiten. Die Voruntersuchung wurde durchgeführt über einen Bereich der Urananreicherung von 10 bis 20 w/o und einer Schwermetall-Beladung von 4 g bis 10 g/Kugel. Die Beladung mit spaltbarem Material pro erzeugte Energieeinheit (kg/GWd) wurde als objektive Funktion für die Voruntersuchung verwendet. Die Ergebnisse der Analyse zeigen, dass die optimale Schwermetall-Beladung bei etwa 8 g/Kugel liegt. Aufgrund der von den technischen Spezifikationen auferlegten Beschränkung von 80 GWd/t für den Entladebrand liegt die Urananreicherung bei optimaler Schwermetall-Beladung bei etwa 13 w/o.

References

1 User Requirement Document – Reaktor Daya Eksperimental –. BATAN, 2014.Search in Google Scholar

2 Xu, Y.; Zuo, K.: Overview of the 10 MW High Temperature Gas Cooled Reactor – Test Module Project. Nuclear Engineering and Design218 (2002) 132310.1016/S0029-5493(02)00181-4Search in Google Scholar

3 Liem, P. H.: BATAN-MPASS: A general fuel management code for pebble-bed high-temperature reactors. Annals of Nuclear Energy21 (5) (1994) 28129010.1016/0306-4549(94)90012-4Search in Google Scholar

4 Tery, W. K.; Gougar, H.D.; Ougouag, A.M.: Direct deterministic method for neutronics analysis and computation of asymptotic burnup distribution in a recirculating pebble-bed reactor. Annals of Nuclear Energy29 (2002) 1345136410.1016/S0306-4549(01)00110-4Search in Google Scholar

5 Teuchert, E. et al.: VSOP – Computer Code System for Reactor Physics and Fuel Cycle Simulation. Jul-1649 (1980)Search in Google Scholar

6 Gerwin, H.; Scherer, W.: Treatment of the Upper Cavity in a Pebble-Bed High Temperature Gas-Cooled Reactor by Diffusion Theory. Nuclear Science and Engineering97 (1987) 91910.13182/NSE87-A23491Search in Google Scholar

7 Liem, P. H.; Sekimoto, H.: Neutronic and Thermal Hydraulic Design of the Graphite Moderated Helium-Cooled High Flux Reactor. Nuclear Engineering and Design139 (2) (1993) 22123310.1016/0029-5493(93)90158-6Search in Google Scholar

Received: 2016-03-08
Published Online: 2017-04-18
Published in Print: 2017-03-16

© 2017, Carl Hanser Verlag, München