Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 19, 2016

Scientific codes developed and used at GRS – Nuclear simulation chain

Die nukleare Rechenkette der GRS
A. Schaffrath, M. Sonnenkalb, J. Sievers, W. Luther and K. Velkov
From the journal Kerntechnik

Abstract

Over 60 technical experts of the reactor safety research division of the Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH are developing and validating reliable methods and computer codes – summarized under the term nuclear simulation chain – for the safety-related assessment for all types of nuclear power plants (NPP) and other nuclear facilities considering the current state of science and technology. This nuclear simulation chain has to be able to simulate and assess all relevant physical processes and phenomena for all operating states and (severe) accidents. In the present contribution, the nuclear simulation chain developed and applied by GRS as well as selected examples of its application are presented. The latter demonstrate impressively the width of its scope and its performance. The GRS codes can be passed on request to other (national as well as international) organizations. This contributes to a worldwide increase of the nuclear safety standards. The code transfer is especially important for developing and emerging countries lacking the financial means and/or the necessary know-how for this purpose. At the end of this contribution, the respective course of action is described.

Kurzfassung

Für die Sicherheitsbewertung von Kernkraftwerken (KKW) sowie sonstigen kerntechnischen Einrichtungen entwickeln und valideren über 60 technische Experten des Bereiches Reaktorsicherheitsforschung der Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH zuverlässige Methoden und Computerprogramme, die unter dem Oberbegriff nukleare Rechenkette zusammengefasst sind. Diese muss in der Lage sein, für alle möglichen Betriebszustände sowie Stör- und Unfälle in KKW die physikalisch relevanten Prozesse und Phänomene zu simulieren. In der vorliegenden Veröffentlichung wird die von der GRS entwickelte und angewendete nukleare Rechenkette vorgestellt. Anschließend belegen ausgewählte Beispiele die Breite ihres Anwendungsspektrums sowie deren Leistungsfähigkeit. Die GRS Codes können auf Anfrage an nationale sowie internationale Organisationen weitergegeben werden. Dies trägt dazu bei, das nukleare Sicherheitsniveau weltweit zu erhöhen. Die Codeweitergabe ist speziell wichtig für Entwicklungsländer, die für derartige Aufgaben weder die erforderlichen Mittel noch das hierfür nötige Know-How besitzen. Am Ende des Beitrages finden sich Hinweise bezüglich Beschreibung der Vorgehensweise bei einem Codetransfer.


* E-mail:

References

1 Bundesministerium der Justiz (BMJ): Gesetz über die friedliche Verwendung der Kernenergie und den Schutz gegen ihre Gefahren (Atomgesetz). zuletzt geändert durch Art. 1 des Gesetzes (BGBL. I, p. 2053), November 2015Search in Google Scholar

2 Bundesministerium für Wirtschaft: Bericht der Arbeitsgruppe Rechtsetzung und technische Normen an den Abteilungsleiterausschuss für Rechtsund Verwaltungsvereinfachung. Bericht Nr. 71, ISSN 0344-5445Search in Google Scholar

3 Gesellschaft für Anlagen und Reaktorsicherheit (GRS) mbH: Scientific Codes Developed and used at GRS. Brochure, June 2011Search in Google Scholar

4 Iliev, O.; Steiner, K.; Zemitis, A.; Klein-Heßling, W.; Sonnenkalb, M.; Freitag, M.: Towards a Coupled CFD/LP Code Approach for Containment Simulations. Proceedings of CFD4NRS-5, OECD/NEA & IAEA Workshop, September 2014, Zürich, SwitzerlandSearch in Google Scholar

5 Schaffrath, A.: The Nuclear Simulation of GRS. 1st Chinese/German Symposium on Fundamentals of Advanced Nuclear Safety Technology, Shanghai, March 2015Search in Google Scholar

6 Schaffrath, A.; Krüssenberg, A.: EASY – Integrale experimentelle und analytische Nachweise der Beherrschbarkeit von Auslegungsstörfällen allein mit passiven Systemen. Workshop Passive Systeme, September 2014Search in Google Scholar

7 AREVA NP GmbH: SWR 1000 – An Advanced Boiling Water Reactor with passive Safety Features. General Description, March 2003Search in Google Scholar

8 AREVA NP GmbH: The 1250 MWe Boiling Water Reactor. Brochure, March 2003Search in Google Scholar

9 Schaffrath, A.; Experimentelle und analytische Untersuchungen zur Wirksamkeit des Notkondensators des SWR600/1000, Forschungszentrum Jülich Jül-3326, ISSN-0944-2952, Dezember 1996Search in Google Scholar

10 Li, W.: Kondensation von Wasserdampf oder eines Wasserdampf-Stickstoff-Gemisches in einem horizontalen Rohr, Forschungszentrum Jülich Jül-3950, ISSN-0944-2952, 2002Search in Google Scholar

11 Drescher, R.: Passive Integral LOCA Testing at the Karlstein Test Facility INKA. International Journal for Nuclear Power atw59 (2014) 302306Search in Google Scholar

12 Schaffrath, A.: KONWAR – eine Erweiterung von ATHLET zur Berechnung der Kondensation in waagerechten Rohren. Forschungszentrum Jülich Jül-3343, ISSN-0944-2952, Januar 1997Search in Google Scholar

13 Papini, D.; Cammi, A.: Modelling of Heat Transfer Phenomena for Vertical and Horizontal Configurations of In-Pool Condensers and Comparison with Experimental Findings. Science and Technology of Nuclear Installations, 201010.1155/2010/815754Search in Google Scholar

14 Thome, J. R.: Condensation in Plain horizontal tubes: recent advances in modelling of heat transfer to pure films and mixtures. Journal of the Brazilian Society of Mechanical Sciences and Engineering27 (2005) 233010.1590/S1678-58782005000100002Search in Google Scholar

15 Buchholz, S.; von der Cron, D.; Schaffrath, A.: System codes improvements for modelling passive safety systems and their validation. EUROSAFE Forum, Brussels, 201510.3139/124.110720Search in Google Scholar

16 Payot, F.; Haste, T.; Biard, B.; Bot-Robin, F.; Devoy, J.; Garnier, Y.; Guillot, J.; Manenc, C.; March, P.: FPT3 Final Report. Document Phébus FP IP/11/589, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 2011Search in Google Scholar

17 Weber, S.; Austregesilo, H.; Klein-Hessling, W.: Simulation of the PHEBUS FPT3 test using a Coupled version of a ATHLET-CD and COCOSYS, 15th International Topical Meeting on Nuclear Reactor Thermal – Hydraulics, NURETH-15, Pisa, Italy, May 12–17, 2013Search in Google Scholar

18 Sonnenkalb, M.; Band, S.; Nowack, H.: Re-evaluation of PAR Concept in German PWR with Revised PAR model. 16th International Topical Meeting on Nuclear Reactor Thermal – Hydraulics, NURETH-16, Chicago, USA, August 30–September 4, 2015Search in Google Scholar

19 Gesellschaft für Anlagen und Reaktorsicherheit (GRS) gGmbH: COCOSYS Short Description. http://www.grs.de/en/content/cocosys (2015)Search in Google Scholar

20 OECD/NEA: OECD/NEA THAI Project: Hydrogen and Fission Product Issues Relevant for Containment Safety Assessment under Severe Accident Conditions. NEA/CSNI/R(2010)3, (2010)Search in Google Scholar

21 OECD/NEA: OECD/NEA THAI 2 Project, http://www.oecd-nea.org/jointproj/thai2.htmlSearch in Google Scholar

22 Allelein, H.-J.; Schwarz, S.; Fischer, K.; Vendel, J.; Malet, J.; Betaib, A.: International Standard Problem ISP-47 on Containment Thermal Hydraulics, Final Report, NEA/CSNI/R(2007)10, (2007)Search in Google Scholar

23 Schwarz, S.; Fischer, K.; Bentiab, A.: Benchmark on Hydrogen Distribution in a Containment based on the OECD-NEA THAI HM-2 Experiment. Nuclear Technology (2011) 594603Search in Google Scholar

24 Band, S.; Sonnenkalb, M.: ATHLET-CD/COCOSYS Analyses of Severe Accidents in Fukushima (Units 2 and 3) within the OECD/NEA BSAF Project, Phase 1. 16th International Topical Meeting on Nuclear Reactor Thermal – Hydraulics, NURETH-16, Chicago, USA, August 30–September 4, 201510.13182/NT16-25Search in Google Scholar

25 Wang, D.; Dong, D.; Zheng, W.; Zhang, D.; Wang, L.: The 200 MW Nuclear Heating Reactor and its Possible Application in Seawater Desalination. Desalination99 (1994) 36738110.1016/0011-9164(94)00189-8Search in Google Scholar

26 Jaijun, J.; Yajun, Z.: Nuclear Seawater Desalination Plant Coupled with 200 MW Hearing Reactor. International Symposium on the Peaceful Applications of Nuclear Technology in the GCC Countries, Jeddah, 2008Search in Google Scholar

27 Dazhi, X.; Jical, L.; Dafeng, C.: An integral design of NHR-200. IAEA Technical commitee meeting on Integral design concepts of advanced water cooled reactors, Obninsk, IAEA-TECDOC-977, 1997Search in Google Scholar

28 Duo, D.; Shuyan, H.; Yongchang, S.; Honglin, W.; Huajian, C.; Yonglin, H.; Zongpo, C.: Mechanical and Structural Design of the 200 MW Nuclear Heating Reactor (NHR-200). IAEA advisory group meeting on design approaches for heating reactors, Beijing, IAEA-TECDOC-965, 1997Search in Google Scholar

29 Feng, X.-Q.; He, S.-Y: Safety Analysis of the Reactor Pressure Vessel of NHR-200. Technische Mechanik18 (1998) 277284Search in Google Scholar

30 KTA Program of Standards: Verification Analysis for Rupture Preclusion for Pressure Retaining Components in Nuclear Power Plants, KTA 3206, Safety Standard of the Nuclear Safety Standards Commission, 2014Search in Google Scholar

31 Nuclear Energy Institute (NEI): Methodology for Performing Aircraft Impact Assessments for New Plant Designs. NEI 07–13 [Revision 8P], April 2011Search in Google Scholar

32 Heckötter, C.; Sievers, J.: Simulation of Impact Tests with Hard, Soft and Liquid Filled Missiles on Reinforced Concrete Structures. Journal of Applied Mechanics, 80 (2013) 10.1115/1.4023391Search in Google Scholar

33 Heckötter, C.; Vepsä, A.: Experimental Investigation and Numerical Analyses of Reinforced Concrete Structures Subjected to External Missile Impact. Progress in Nuclear Energy84 (2015) 566710.1016/j.pnucene.2015.02.007Search in Google Scholar

Received: 2016-01-15
Published Online: 2016-04-19
Published in Print: 2016-04-27

© 2016, Carl Hanser Verlag, München