Skip to content
BY 4.0 license Open Access Published by De Gruyter October 14, 2016

Comparative analysis of deterministic and probabilistic fracture mechanical assessment tools

Vergleich probabilistischer und deterministischer Bruchmechanik-Codes
  • K. Heckmann and Q. Saifi
From the journal Kerntechnik

Abstract

Uncertainties in material properties, manufacturing processes, loading conditions and damage mechanisms complicate the quantification of structural reliability. Probabilistic structure mechanical computing codes serve as tools for assessing leak- and break probabilities of nuclear piping components. Probabilistic fracture mechanical tools were compared in different benchmark activities, usually revealing minor, but systematic discrepancies between results of different codes. In this joint paper, probabilistic fracture mechanical codes are compared. Crack initiation, crack growth and the influence of in-service inspections are analyzed. Example cases for stress corrosion cracking and fatigue in LWR conditions are analyzed. The evolution of annual failure probabilities during simulated operation time is investigated, in order to identify the reasons for differences in the results of different codes. The comparison of the tools is used for further improvements of the codes applied by the partners.

Kurzfassung

Unsicherheiten in Werkstoffeigenschaften, Herstellungsprozessen, Lastbedingungen und Schädigungsmechanismen beeinflussen die Quantifizierung der Strukturzuverlässigkeit. Computercodes für probabilistische Strukturmechanik wurden als Werkzeuge zur Bewertung kerntechnischer Rohrleitungskomponenten entwickelt und in verschiedenen Benchmarks verglichen, in denen üblicherweise geringe, aber systematische Unterschiede zwischen verschiedenen Programmen gefunden wurden. In diesem Artikel werden bruchmechanische Analysewerkzeuge verglichen. Die Fallstudien umfassen Rissinitiierung, Risswachstum und wiederkehrende Prüfungen, Testfälle für Spannungsrisskorrosion und Ermüdung in Leichtwasserreaktor-Bedingungen werden analysiert, die Ergebnisse für den Verlauf der jährlichen Versagenswahrscheinlichkeit während des simulierten Betriebs werden verglichen, um die Ursachen für Unterschiede zu identifizieren. Die Vergleichsstudie wird für die Weiterentwicklungen der Programme verwendet.


* E-Mail:

References

1 Schulz, H.; Schimpfke, T.; Brickstad, B.; Chapman, V.; Sheperd, B.; Kelly, S.; Olsson, S.; Wintle, J.; Muhammed, A.; Simola, K.: Nuclear Risk-Based Inspection Methodology for passive components (NURBIM). Final Report, Contract FIKS-CT-2001-00172, August 2004Search in Google Scholar

2 Simola, K.; Cronvall, O.; Männistö, I.; Gunnars, J.; Alverlind, L.; Dillström, P.; GandossiL.: Studies on the effect of flaw detection probability assumptions on risk reduction at inspection. Nordic nuclear safety research, NKS-208, December 2009Search in Google Scholar

3 Simonen, F. A.; Doctor, S. R.; Gosselin, S. R.; Rudland, D. L.; Xu, H.; Wilkoski, G. M.; Ladell, B. O. Y.: Probabilistic Fracture Mechanics Evaluation of Selected Passive Components. Technical Letter Report PNNL-16625, Pacific Northwest National Laboratory, May 200710.2172/909250Search in Google Scholar

4 Marie, S.; Faidy, C.: BENCH-KJ – Benchmark on the analytical evaluation of the fracture mechanic parameters K and J for different components and loads. OECD IAGE, Rev.5, March 201310.1115/PVP2013-97178Search in Google Scholar

5 Marie, S.: BENCHKJ: Benchmark on analytical methods for the Fracture Mechanics parameters calculation. 2012 progress report SEMT/LISN/RT/12–038/A, CEA, December 2012Search in Google Scholar

6 Marie, S.; Faidy, C.: Bench-KJ: Benchmark on analytical calculation of fracture mechanics parameters K and J for cracked piping components – progress of the work. Proceedings of the ASME 2013 PVP Conference, July 201310.1115/pvp2013-97178Search in Google Scholar

7 Kayser, Y.; Marie, S.; Chapuliot, S.; Le Delliou, P.; Faidy, C.: BenchKJ: Benchmark on analytical calculation of fracture mechanics parameters K and J for cracked piping components – final results and conclusions. Transactions, SMiRT-23, August 2015Search in Google Scholar

8 Components of the Reactor Coolant Pressure Boundary of Light Water Reactors. Safety Standards of the Nuclear Safety Standards Commission, Parts 1–4, November 201210.1016/B978-0-12-388446-6.00001-0Search in Google Scholar

9 Verification Analysis for Rupture Preclusion for Pressure Retaining Components in Nuclear Power Plants. Safety Standards of the Nuclear Safety Standards Commission, November 2014Search in Google Scholar

10 ASME Boiler & Pressure Vessel Code. Vol. XI: Rules for In-service Inspection of Nuclear Power Plant Components. The American Society of Mechanical Engineers, 2013Search in Google Scholar

11 Assessment of the Integrity of Structures Containing Defects. R6-Revision 4, April 2001Search in Google Scholar

12 Busch, M.; Petersilge, M.; Varfolomeyev, I.: Polynomial Influence Functions for Surface Cracks in Pressure Vessel Components. IWM-Report Z 11/95, October 1995Search in Google Scholar

13 Zahoor, Z.: Ductile fracture handbook. Vol. 1–3, EPRI-Report NP-6301-D, 19891991Search in Google Scholar

14 Heckmann, K.; Bläsius, C.; Bahr, L.; Sievers, J.: WinLeck 4.7. User's Manual and Validation Report. GRS-P-6 Vol. 1–2 Rev. 5, June 2015Search in Google Scholar

15 Heckmann, K.; Sievers, J.: Code development for piping integrity assessment with respect to new German safety standard. Transactions SMiRT-23, Div. II, Manchester, August 2015Search in Google Scholar

16 Heckmann, K.; Ma, K.; Sievers, J.: Probabilistic aspects on break preclusion assessment in nuclear piping. Proceedings of the 41th MPA-Seminar, Stuttgart, October 2015Search in Google Scholar

17 Heckmann, K.; Bläsius, C.; Ma, K.; Sievers, J.: PROST 4.4. User's Manual, Theory Manual, Validation Report, Programmer's Manual. GRS-P-7 Vol. 1–4, Rev. 5, June 2015Search in Google Scholar

18 Simonen, F. A.; Woo, H. H.: Analyses of the Impact of Iservice Inspection Using a Piping Reliability Model. NUREG/CR-3869, PNL-5149, July 198410.2172/6624734Search in Google Scholar

19 Harris, D. O.; Dedhia, D. D.: WinPRAISE 98 PRAISE Code in Windows. Engineering Mechanics Technology, Inc., 1998Search in Google Scholar

20 Paris, P. C.; Erdogan, F.: A Critical Analysis of Crack Propagation Laws. Journal of Basic Engineering; Transaction, American Society of Mechanical Engineers, Series D, 85, PP. 528534, 196310.1115/1.3656900Search in Google Scholar

21 Abdo, T.; Rackwitz, R.: Reliability of uncertain systems. Finite Elements in Engineering Applications, 161176, INTES, Stuttgart1990Search in Google Scholar

22 Vepsä, A.; Cronvall, O.: Comparison of three sampling methods in the context of probabilistic fracture mechanics analyses of NPP piping welds: case study. Research report VTT-R-00152–10, VTT, 2010Search in Google Scholar

23 Cronvall, O.; Alhainen, J.; Kaunisto, K.; Männistö, I.; Silvonen, T.; Vepsä, A.: RI-ISI Analyses and Inspection Reliability of Piping Systems (RAIPSYS). RAIPSYS project Summary Report, Technical Research Centre of Finland (VTT), Espoo, Finland, 2013.Search in Google Scholar

24 Kocak, M.: European Fitness For Service Network. FITNET Final Technical Report, GKSS Forschungszentrum, GTC1-2001-43049, 2006Search in Google Scholar

25 Cronvall, O.; Männistö, I.; Simola, K.: Development and testing of VTT approach to risk-informed in-service inspection methodology. Final report of SAFIR INTELI INPUT Project RI-ISI, Technical Research Centre of Finland (VTT), Espoo, Finland, 2007Search in Google Scholar

26 Position Paper of the Technical Safety Organisations: Research Needs in Nuclear Safety for Gen2 and Gen3 NPPs. ETSON/2011-001, October 2011Search in Google Scholar

Received: 2016-02-25
Published Online: 2016-10-14
Published in Print: 2016-10-28

© 2016, Carl Hanser Verlag, München

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 28.5.2023 from https://www.degruyter.com/document/doi/10.3139/124.110725/html
Scroll to top button