Skip to content
BY 4.0 license Open Access Published by De Gruyter October 14, 2016

Experimental and numerical investigations on the direct contact condensation phenomenon in horizontal flow channels and its implications in nuclear safety

Experimentelle und numerische Untersuchungen des Phänomens Kontaktkondensation in horizontalen Strömungskanälen und sein Einfluss auf Reaktorsicherheitsanalysen
  • S.C. Ceuca and D. Laurinavicius
From the journal Kerntechnik


The complex direct contact condensation phenomenon is investigated in horizontal flow channels both experimentally and numerically with special emphasis on its implications on safety assessment studies. Under certain conditions direct contact condensation can act as the driving force for the water hammer phenomenon with potentially local devastating results, thus posing a threat to the integrity of the affected NPP components. New experimental results of in-depth analysis of the direct contact condensation phenomena obtained in Kaunas at the Lithuanian Energy Institute will be presented. The German system code ATHLET employing for the calculation of the heat transfer coefficient a mechanistic model accounting for two different eddy length scales, combined with the interfacial area transport equation will be assessed against condensation induced water hammer experimental data from the integral thermal-hydraulic experimental facility PMK-2, located at the KFKI Atomic Energy Research Institute in Budapest Hungary.


Das komplexe Phänomen der Kontaktkondensation in horizontalen Strömungskanälen wurde sowohl experimentell als auch numerisch in Hinblick auf dessen Folgen für Reaktorsicherheitsanalysen untersucht. Unter bestimmten Bedingungen kann die Kontaktkondensation als treibende Kraft für Druckstöße wirken und somit lokal potentiell zerstörerische Kräfte freisetzen, wodurch die Integrität von Kraftwerkskomponenten gefährdet ist. In diesem Beitrag werden zum einen Ergebnisse von hochaufgelösten Messungen der Kontaktkondensation an der Versuchsanlage des Lithuanian Energy Instituts vorgestellt und zum anderen Ergebnisse von Simulationsrechnungen mit dem Systemcode ATHLET zu Kondensationsschlägen. In letzteren werden zum einen Rechnungen mit einem mechanistischen Modell zur Berechnung des Wärmeübergangskoeffizient basierend auf zwei Wirbelgrößen und zum anderen Rechnungen mit einer Transportgleichung für die Zwischenphasenfläche durchgeführt. Die Ergebnisse werden mit Messdaten zu Kondensationsschlagversuchen der Integralversuchsanlage PMK-2 des KFKI Atomic Energy Research Instituts in Budapest verglichen.

* E-mail:


1 Cahill, W. J.: Feedwater line incident report – Indian Point Unit No. 2. Consolidated Edison Co., AEC Docket No. 50–247, 1974Search in Google Scholar

2 Almenas, K.; Pabarcius, R.; Seporaitis, M.: Design and tests of a device for the generation of controlled condensation implosion events. Heat Transfer Engineering27 (2006) 324110.1080/01457630500458047Search in Google Scholar

3 Valincius, M.; Seporaitis, M.; Kaliatka, A.; Pabarcius, R.; Gasiunas, S.; Laurinavicius, D.: The concept and RELAP5 model of thermal-hydraulic system employing a rapid condensation for coolant circulation. Heat Transfer Engineering35 (2014) 32733510.1080/01457632.2013.810965Search in Google Scholar

4 Kulisch, H.; Dirndorfer, S.; Dörfler, M.; Malcherek, A.: Condensation-induced water hammer – overview and own experiments. Proc. of the 14th Intl. Topical Meeting on Nuclear Reactor Thermal-Hydraulics, 2011Search in Google Scholar

5 Urban, C.; Schlüter, M.: Investigations on the stochastic nature of condensation induced water hammer. Int. J. of Multiphase Flow67 (2014) 1910.1016/j.ijmultiphaseflow.2014.08.001Search in Google Scholar

6 Austregesilo, H.; Trambauer, K.: Modelling of the Interfacial Area Concentration in the System Code ATHLET. Proc. of the 11th Intl. Topical Meeting on Nuclear Reactor Thermal-Hydraulics, 2005Search in Google Scholar

7 Kocamustafaogullari, G.; Ishii, M.: Foundations of the interfacial area transport equation and its closure relations. Intl. J. of Heat Mass Trans38 (1995) 48149310.1016/0017-9310(94)00183-VSearch in Google Scholar

8 Taitel, Y.; Dukler, A. E.: A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow. AIChE Journal22 (1976) 475510.1002/aic.690220105Search in Google Scholar

9 Trambauer, K.; Austregesilo, H.; Bals, Ch.; Cester, F.; Deitenbeck, H.; Klein-Heßling, W.; Lerchl, G.; Müller, Ch.; Papukchiev, A.; Schubert, J. D.: Continued development of the computer code system ATHLET/ATHLET-CD. Gesellschaft für Anlagen und Reaktorsicherheit (GRS) mbH, Reactor Safety Research-Project 2009 No.: RS 1162.Search in Google Scholar

10 Ceuca, C. S.; Macián-Juan, R.: Development of a 1 D hybrid HTC model using CFD simulations for the analysis of direct contact condensation as the driving force for water hammers. Kerntechnik78 (2013) 253010.3139/124.110307Search in Google Scholar

11 Higbie, R.: The rate of absorption of a pure gas into a still liquids during a short time of exposure. Transactions of AIChE31 (1935) 365389Search in Google Scholar

12 Hughes, E. D.; Duffey, R. B.: Direct contact condensation and momentum transfer in turbulent separated flows. Intl. J. of Multiphase Flow17 (1991) 59961910.1016/0301-9322(91)90027-ZSearch in Google Scholar

13 Shen, L.; Triantafyllou, G. S.; Yue, K. P. D.: Turbulent diffusion near a free surface. J. of Fluid Mechanics407 (2000) 14516610.1017/S0022112099007466Search in Google Scholar

14 Egorov, Y.; Boucker, M.; Martin, A.; Pigny, S.; Scheuerer, M.; Willemsen, S.: Validation of CFD codes with PTS-relevant test cases 5th EURATOM FRAMEWORK PROGRAMME 1998–2002. 2004, Technical reportSearch in Google Scholar

15 Kolev, N. I.: Multiphase Flow Dynamics II. 2007, Berlin: Springer-Verlag, p. 60563110.1007/3-540-69833-7Search in Google Scholar

16 Prasser, H. M.; Ézsöl, G.; Baranyai, G.; Sühnel, T.: Spontaneous waterhammers in a stream line in case of cold water ingress. Multiphase Sci. Technol.20 (2008) 26528910.1615/MultScienTechn.v20.i3-4.30Search in Google Scholar

17 Barna, I. F.; Imre, A. R.; Baranyai, G.; Ézsöl, G.: Experimental and theoretical study of steam condensation induced water hammer phenomena. Nuclear Engineering and Design, 240 (2010) 14615010.1016/j.nucengdes.2009.09.027Search in Google Scholar

Received: 2016-03-01
Published Online: 2016-10-14
Published in Print: 2016-10-28

© 2016, Carl Hanser Verlag, München

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 25.2.2024 from
Scroll to top button