Skip to content
Accessible Unlicensed Requires Authentication Published by De Gruyter June 14, 2017

New version of the reactor dynamics code DYN3D for Sodium cooled Fast Reactor analyses

Eine neue Version des Reaktordynamik-Codes-DYN3D für die Analyse von natriumgekühlten schnellen Reaktoren
E. Nikitin, E. Fridman, Y. Bilodid and S. Kliem
From the journal Kerntechnik

Abstract

The reactor dynamics code DYN3D being developed at the Helmholtz-Zentrum Dresden-Rossendorf is currently under extension for Sodium cooled Fast Reactor analyses. This paper provides an overview on the new version of DYN3D to be used for SFR core calculations. The current article shortly describes the newly implemented thermal mechanical models, which can account for thermal expansion effects of the reactor core. Furthermore, the methodology used in Sodium cooled Fast Reactor analyses to generate homogenized few-group cross sections is summarized. The conducted and planned verification and validation studies are briefly presented. Related publications containing more detailed descriptions are outlined for the completeness of this overview.

Kurzfassung

Der vom Helmholtz-Zentrum Dresden-Rossendorf entwickelte Reaktordynamik-Code-DYN3D wird derzeit auf die Anwendung für schnelle Reaktoren erweitert. Dieser Artikel gibt einen Überblick über die neue Version von DYN3D, die für Kernrechnungen von natriumgekühlten Reaktoren angewendet werden soll. Der vorliegende Artikel beschreibt kurz die neu implementierten Modelle für die Modellierung der thermischen Ausdehnungseffekte des Reaktorkerns. Weiterhin ist die Methodik der Erzeugung von homogenisierten Wenig-Gruppenwirkungsquerschnitten für natriumgekühlte schnelle Reaktoren zusammengefasst. Die durchgeführten und geplanten Verifikations- und Validierungsstudien werden kurz vorgestellt. Zur Vervollständigung des Überblicks werden die entsprechenden ausführlichen Publikationen kurz dargestellt.

References

1 Rohde, U.; Kliem, S.; Grundmann, U.; Baier, S.; Bilodid, Y.; Duerigen, S.; Fridman, E.; Gommlich, A.; Grahn, A.; Holt, L.; Kozmenkov, Y.; Mittag, S.: The reactor dynamics code DYN3D – models, validation and applications. Prog. Nucl. Energy89 (2016) 17019010.1016/j.pnucene.2016.02.013Search in Google Scholar

2 Kozmenkov, Y.; Kliem, S.; Rohde, U.: Validation and verification of the coupled neutron kinetic/thermal hydraulic system code DYN3D/ATHLET. Ann. Nucl. Energy84 (2015) 15316510.1016/j.anucene.2014.12.012Search in Google Scholar

3 Kozmenkov, Y.; Orekhov, Y.; Grundmann, U.; Kliem, S.; Rohde, U.; Seidel, A.: Development and benchmarking of the DYN3D/RELAP5 code system. 2001Search in Google Scholar

4 Kliem, S.; Kozmenkov, Y.; Höhne, T.; Rohde, U.: Analyses of the V1000CT-1 benchmark with the DYN3D/ATHLET and DYN3D/RELAP coupled code systems including a coolant mixing model validated against CFD calculations. Prog. Nucl. Energy48 (2006) 83084810.1016/j.pnucene.2006.06.008Search in Google Scholar

5 Kliem, S.; Gommlich, A.; Grahn, A.; Rohde, U.; Schütze, J.; Frank, T.; Gomez, A.; Sanchez, V.: Development of multi-physics code systems based on the reactor dynamics code DYN3D. Kerntechnik76 (2011) 16016510.3139/124.110146Search in Google Scholar

6 Gomez-Torres, A. M.; Sanchez-Espinoza, V. H.; Ivanov, K.; Macian-Juan, R.: DYNSUB: A high fidelity coupled code system for the evaluation of local safety parameters – Part I: Development, implementation and verification. Ann. Nucl. Energy48 (2012) 10812210.1016/j.anucene.2012.05.011Search in Google Scholar

7 Holt, L.; Rohde, U.; Seidl, M.; Schubert, A.; Van Uffelen, P.; Macián-Juan, R.: Two-way coupling between the reactor dynamics code DYN3D and the fuel performance code TRANSURANUS at assembly level. in 22nd International Conference on Nuclear Engineering (ICONE22), 201410.1115/icone22-30812Search in Google Scholar

8 Holt, L.; Rohde, U.; Seidl, M.; Schubert, A.; Van Uffelen, P.; Macián-Juan, R.: Development of a general coupling interface for the fuel performance code TRANSURANUS – Tested with the reactor dynamics code DYN3D. Ann. Nucl. Energy84 (2015) 738510.1016/j.anucene.2014.10.040Search in Google Scholar

9 Holt, L.; Rohde, U.; Kliem, S.; Baier, S.; Seidl, M.; Van Uffelen, P.; Macián-Juan, R.: Investigation of feedback on neutron kinetics and thermal hydraulics from detailed online fuel behavior modeling during a boron dilution transient in a PWR with the two-way coupled code system DYN3D-TRANSURANUS. Nucl. Eng. Des.297 (2016) 324310.1016/j.nucengdes.2015.11.005Search in Google Scholar

10 Leppänen, J.; Pusa, M.; Viitanen, T.; Valtavirta, V.; Kaltiaisenaho, T.: The Serpent Monte Carlo code: Status, development and applications in 2013. Ann. Nucl. Energy82 (2015) 14215010.1016/j.anucene.2014.08.024Search in Google Scholar

11 FridmanE.; Shwageraus, E.: Modeling of SFR cores with Serpent-DYN3D codes sequence. Ann. Nucl. Energy53 (2013) 35436310.1016/j.anucene.2012.08.006Search in Google Scholar

12 Rachamin, R.; Wemple, C.; Fridman, E.: Neutronic analysis of SFR core with HELIOS-2, Serpent, and DYN3D codes. Ann. Nucl. Energy55 (2013) 19420410.1016/j.anucene.2012.11.030Search in Google Scholar

13 Nikitin, E.; Fridman, E.; Mikityuk, K.: Solution of the OECD/NEA neutronic SFR benchmark with Serpent-DYN3D and Serpent-PARCS code systems. Ann. Nucl. Energy75 (2015) 49249710.1016/j.anucene.2014.08.054Search in Google Scholar

14 Tommasi, J.: Création de pseudo-produits de fission pour ERANOS (BIBLIOTHEQUES JEFF-3.1). 2006Search in Google Scholar

15 Nikitin, E.; Fridman, E.; Mikityuk, K.: On the use of the SPH method in nodal diffusion analyses of SFR cores. Ann. Nucl. Energy85 (2015) 54455110.1016/j.anucene.2015.06.007Search in Google Scholar

16 Waltar, A. E.; Todd, D. R.; Tsvetkov, P. V.: Fast Spectrum Reactors. Springer Science+Business Media, 2012Search in Google Scholar

17 Rouault, J.; Chellapandi, P.; Raj, B.; Dufour, P.; Latge, C.; Paret, L.; Lo Pinto, P.; Rodriguez, G. H.; Gautier, G.-M.; Fiorini, G.-L.; Pelletier, M.; Gosset, D.; Bourganel, S.; Mignot, G.; Varaine, F.; Valentin, B.; Masoni, P.; Martin, P.; Queval, J.-C.; Broc, D.; Devictor, N.: Sodium Fast Reactor Design: Fuels, Neutronics, Thermal-Hydraulics, Structural Mechanics and Safety. in Handbook of Nuclear Engineering, D. G.Cacuci, Ed. Boston, MA: Springer US, 2010, 2321271010.1007/978-0-387-98149-9_21Search in Google Scholar

18 Mikityuk, K.: Assessing LFR and SFR Safety: Criteria, Event Scenarios for DBAs and Beyond DBAs, Knowledge Gaps. in The 2016 Frédéric JOLIOT & Otto HAHN Summer School, 2016.Search in Google Scholar

19 Planchon, H. P.; Singer, R. M.; Mohr, D.; Feldman, E. E.; Chang, L. K.; Betten, P. R.: The experimental breeder reactor II inherent shutdown and heat removal tests – results and analysis. Nucl. Eng. Des.91 (1986) 28729610.1016/0029-5493(86)90082-8Search in Google Scholar

20 Lázaro, A.; Ammirabile, L.; Bandini, G.; Darmet, G.; Massara, S.; Dufour, P.; Tosello, A.; Gallego, E.; Jimenez, G.; Mikityuk, K.; Schikorr, M.; Bubelis, E.; Ponomarev, A.; Kruessmann, R.; Stempniewicz, M.: Code assessment and modelling for Design Basis Accident Analysis of the European sodium fast reactor design. Part I: System description, modelling and benchmarking. Nucl. Eng. Des.266 (2014) 11610.1016/j.nucengdes.2013.10.019Search in Google Scholar

21 Lazaro, A.; Schikorr, M.; Mikityuk, K.; Ammirabile, L.; Bandini, G.; Darmet, G.; Schmitt, D.; Dufour, P.; Tosello, A.; Gallego, E.; Jimenez, G.; Bubelis, E.; Ponomarev, A.; Kruessmann, R.; Struwe, D.; Stempniewicz, M.: Code assessment and modelling for Design Basis Accident analysis of the European Sodium Fast Reactor design. Part II: Optimised core and representative transients analysis. Nucl. Eng. Des.277 (2014) 26527610.1016/j.nucengdes.2014.02.029Search in Google Scholar

22 International Atomic Energy Agency: Benchmark Analyses on the Control Rod Withdrawal Tests Performed during the PHENIX End-of-Life Experiments. IAEA-TECDOC-1742. Vienna, Austria: International Atomic Energy Agency, 2014Search in Google Scholar

23 International Atomic Energy Agency: Benchmark Analyses on the Natural Circulation Test Performed During the PHENIX End-of-Life Experiments. IAEA-TECDOC-1703. Vienna, Austria: International Atomic Energy Agency, 2013Search in Google Scholar

24 Patricot, C.; Baudron, A.-M.; Fandeur, O.; Broc, D.: Neutronic calculation of deformed cores: Development of a time-dependent diffusion solver in CAST3 M, a mechanics dedicated finite element code. PHYSOR 20161 (2016) 583592Search in Google Scholar

25 Reed, M. W.: The “virtual density” theory of neutronics. Massachusetts Institute of Technology, 2014Search in Google Scholar

26 Andriolo, L.; Rineiski, A.; Vezzoni, B.; Gabrielli, F., Chen, X.-N.; Maschek, W., Delage, F.; Merle-Lucotte, E.: An Innovative Methodology for Evaluating Core Thermal Expansion. in ICAPP2015 (2015) 504512Search in Google Scholar

27 PonomarevA.; Sanchez, V.: Modeling of reactivity effects and non-uniform axial expansion of SFR core on basis of neutronics model with constant calculation mesh. International Congress on Advances in Nuclear Power Plants, ICAPP2014 (2014) 11841190Search in Google Scholar

28 SeubertA.; Velkov, K.: Fast Reactor Diagrid and Axial Expansion Models for the Diffusion Equation. PHYSOR2016 (2016) 18711882Search in Google Scholar

29 GalletB.; Venot, R.: Fuel assembly support column for a nuclear reactor diagrid. US4016035A, 1977Search in Google Scholar

30 CrankJ.; Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Adv. Comput. Math.6 (1996) 20722610.1007/BF02127704Search in Google Scholar

31 Blanchet, D.; Buiron, L.; Nicolas, S.; Kim, T. K.; Taiwo, T.: AEN – WPRS Sodium Fast Reactor Core Definitions (version 1.2). OECD/NEA, 2011Search in Google Scholar

32 Downar, T. J.; Xu, Y.; Seker, V.; Hudson, N.: PARCS v3.0 – U.S. NRC Core Neutronics Simulator. Theory Manual. Ann Arbor, MI, 2010Search in Google Scholar

33 NikitinE.; Fridman, E.: Axial fuel rod expansion model in nodal code DYN3D for SFR application. PHYSOR2016 (2016) 32413251Search in Google Scholar

34 BaehrH.D.; Stephan, K.: Heat and Mass Transfer, 2nd ed.Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 20061701657210.1039/b608552kSearch in Google Scholar

35 Lerchl, G.; Austregesilo, H.; Schöffel, P.; von der Cron; D.Weyermann, F.: ATHLET Mod 3.0 Cycle A. User's Manual, GRS – P – 1 Vol. 1 Rev. 6. GRS, 2012Search in Google Scholar

Received: 2017-01-02
Published Online: 2017-06-14
Published in Print: 2017-07-26

© 2017, Carl Hanser Verlag, München