Skip to content
Accessible Unlicensed Requires Authentication Published by De Gruyter August 18, 2017

Recalculating the steady state conditions of the V-1000 zero-power facility at Kurchatov Institute using Monte Carlo and nodal diffusion codes

Neuberechnung der stationären Bedingungen der V-1000 Nullleistungsversuchsanlage des Kurchatov-Instituts unter Verwendung von Monte-Carlo- und nodalen Diffusionsprogrammen
V. Sahlberg
From the journal Kerntechnik

Abstract

Continuous-energy Monte Carlo reactor physics code Serpent 2 was used to model the critical steady state conditions measured in V-1000 zero-power critical facility at Kurchatov Institute (KI), Moscow in 1990–1992. The Serpent 2 results were compared to measurements and Serpent 2 was used to generate group constants for reactor dynamics code HEXTRAN. The results of a HEXTRAN calculation of the steady state were compared to Serpent 2. The relative power density distribution of the SERPENT2 calculations compared with the measurements was within the statistical accuracy. The comparison of HEXTRAN and Serpent 2 node-wise relative power density distributions showed an accuracy of ±10%.

Kurzfassung

Mit dem Monte-Carlo-Reaktorphysikprogramm SERPENT2 wurden kritische stationäre Zustände des Kerns der V-1000 Nullleistungsversuchsanlage des Kurchatov-Instituts nachgerechnet und mit experimentellen Daten aus den Jahren 1990–1992 verglichen. Zusätzlich wurden mit Serpent 2 Gruppenkonstanten berechnet, die als Eingabedaten im Reaktordynamikprogramm HEXTRAN verwendet wurden. Die Ergebnisse der stationären HEXTRAN-Rechnungen wurden mit den Serpent 2-Ergebnissen verglichen. Die relativen Leistungsdichteverteilungen der Serpent 2-Rechungen verglichen mit den Messwerten ergab Abweichungen im Bereich der statistischen Streuung. Der Vergleich von relativen HEXTRAN und Serpent2-Nodeleistungsdichten zeigte Abweichungen von ±10%.

References

1 Leppänen, J.; Pusa, M.; Viitanen, T.; Valtavirta, V.; Kaltiaisenaho, T.: The Serpent Monte Carlo code: Status, development and applications in 2013. Annals of Nuclear Energy82 (2015) 14210.1016/j.anucene.2014.08.024Search in Google Scholar

2 Ionov, V. S.; Krainov, Yu. A.; Epanechnikov, Yu. A.; Baryjbkin, V. I.: Measurements at V-1000 critical facility. Kinetics Experiments Description. EU FP5 Report VALCO/WP3/MEAS(D3)-2, Brussels, BelgiumSearch in Google Scholar

3 Kyrki-Rajamäki, R.: Three-dimensional reactor dynamics code for VVER type nuclear reactors. VTT Publications 246. Dr. Tech. Thesis, Technical Research Centre of Finland, Espoo. (1995) 51 p. + app. 80pSearch in Google Scholar

4 Keresztúri, A.; Hegyi, Gy.; Marázcy, Cs.; Panka, I.; Telbisz, M.; Trosztel, I.; Hegedus, Cs.: Development and validation of the three-dimensional dynamic code KIKO3D. Annals of Nuclear Energy30 (2003) 9310.1016/S0306-4549(02)00043-9Search in Google Scholar

5 Rohde, U. et al.: The reactor dynamics code DYN3D – models, validation and applications. Progress in Nuclear Energy89 (2016) 17019010.1016/j.pnucene.2016.02.013Search in Google Scholar

6 Kotsarev, A. et al.: Qualification of coupled 3D neutron kinetic/thermal hydraulic code systems by the calculation of a VVER-440 benchmark – Re-connection of an isolated loop. Kerntechnik81 (2016) 40741710.3139/124.110702Search in Google Scholar

7 Mittag, S.; Grundmann, U.; Weiss, F.-P.; Petkov, P. T.; Kaloinen, E.; Keresztúri, A.; Panka, I.; Kuchin, A.; Ionov, V.; Powney, D.: Neutron-kinetic code validation against measurements in the Moscow V-1000 zero-power facility. Nuclear Engineering and Design235 (2005) 48510.1016/j.nucengdes.2004.08.043Search in Google Scholar

8 Hutton, J. I.: New capabilities of the WIMS code. In: Proceedings of the PHYSOR 2000, Pittsburgh, USA (2000) ISBN 0-89448-655-1Search in Google Scholar

9 Edenius, M.; Ekberg, K.; Forss'en, B. H.; Knott, D.: CASMO-4, A fuel assembly burnup program. User's Manual, STUDSVIK/SOA-95/1, Studsvik of America Inc., USA (1995)Search in Google Scholar

10 Casal, J. J.; Stammler, R. J. J.; Villarino, E. A.; Ferri, A. A.: HELIOS: geometric capabilities of a new fuel assembly program. In: Proceedings of the International Topical Meeting on Advances in Mathematics. Computations and Reactor Physics, vol. 2, Pittsburgh, PA, USA (1991). 10.2.1-1Search in Google Scholar

11 Lazarenko, A. et al.: Development of multi-group spectral code TVS-M, Kerntechnik77 (2012) 21321710.3139/124.110245Search in Google Scholar

12 Maiorov, L.; Andrzejewski, K.; Apostolov, T.; Becker, R.; Gado, J.; Keresztúri, A.; Laletin, N.; Lebedev, V.; Lelek, V.; Lizorkin, M.; Makai, M.; Novikov, A.; PsheninV.; Yudkevich, M. (Eds.): Theoretical investigations of the physical properties of WWER-type uranium–water lattice. Final Report of Temporary International Collective (TIC), vol. 2, Akadémiai Kiadó, Budapest, Hungary (1994). ISBN 963-05-6682-6Search in Google Scholar

13 Petkov, P. T.: Development of a neutron transport code for many-group two-dimensional heterogeneous calculations by the method of characteristics. In: Proceedings of the 10th Symposium of AER, Moscow, Russia (2000). 271, ISBN 963-372-622-0Search in Google Scholar

14 Petkov, P. T.: Calculation of accurate albedo boundary conditions for three-dimensional nodal diffusion codes by the method of characteristics. In: Proceedings of the 10th Symposium of AER, Moscow, Russia (2000). 407, ISBN 963-372-622-0Search in Google Scholar

15 Kotsarev, A.: Personal communication with A. Kotsarev, 30.7.2016Search in Google Scholar

16 Soitinaho, R.: Illustration by R. Soitinaho, 10.1.2017Search in Google Scholar

Received: 2017-01-23
Published Online: 2017-08-18
Published in Print: 2017-09-01

© 2017, Carl Hanser Verlag, München