Accessible Requires Authentication Published by De Gruyter December 9, 2017

Application of Pareto optimization method for ontology matching in nuclear reactor domain

Anwendung der Pareto-Optimierungsmethode für Ontology-Matching-Verfahren im kerntechnischen Bereich
N. M. Meenachi and M. Sai Baba
From the journal Kerntechnik

Abstract

This article describes the need for ontology matching and describes the methods to achieve the same. Efforts are put in the implementation of the semantic web based knowledge management system for nuclear domain which necessitated use of the methods for development of ontology matching. In order to exchange information in a distributed environment, ontology mapping has been used. The constraints in matching the ontology are also discussed. Pareto based ontology matching algorithm is used to find the similarity between two ontologies in the nuclear reactor domain. Algorithms like Jaro Winkler distance, Needleman Wunsch algorithm, Bigram, Kull Back and Cosine divergence are employed to demonstrate ontology matching. A case study was carried out to analysis the ontology matching in diversity in the nuclear reactor domain and same was illustrated.

Kurzfassung

Dieser Beitrag beschreibt die Notwendigkeit für und die Methoden von Ontology-Matching-Verfahren. Die Bemühungen konzentrieren sich auf die Implementierung von Wissensmanagementsystemen für den kerntechnischen Bereich auf der Grundlage des Semantic Web mit Hilfe von Ontologien, die Begriffe und ihre Zusammenhänge untereinander in einer formalisierten Art definieren. Die Constraints beim Matching der Ontologien werden ebenfalls diskutiert. Ontology-Matching-Algorithmen auf der Grundlage der Pareto-Optimierung werden verwendet um Ähnlichkeiten zwischen zwei Ontologien im kerntechnischen Bereich zu finden. Algorithmen wie Jaro-Winkler-Abstand, Needleman-Wunsch-Algorithmus, Bigram, Kull Back und Cosine-Divergenz werden benutzt um Ontology-Matching-Verfahren darzustellen. Eine Fallstudie wurde durchgeführt um die Vielseitigkeit dieser Verfahren im kerntechnischen Bereich zu analysieren und darzustellen.


* Corresponding author: E-mail:

References

1 Ujwala, B.; Surya, D.: Ontolgy Matching for Geospatial Domain, https://pdfs.semanticscholar.org/6752/a7dc710f6e025802655b975f415eff1bbf2b.pdf Search in Google Scholar

2 Berners-Lee, T.; Hendler, J.; Lassila, O.: The Semantic Web. Scientific American284 (2001) 28 Search in Google Scholar

3 Uschold, M.; Gruninger, M.: Ontologies: principles, methods and applications. The Knowledge Engineering Review11 (1996) 93 Search in Google Scholar

4 Noy, N. F.: Semantic Integration: A Survey of ontology-based approaches. ACM Sigmod Record33 (2004) 65 Search in Google Scholar

5 Noy, N. F.; Mark, A. M.: The PROMPT suite: interactive tools for ontology merging and mapping, International Journal of Human-Computer Studies59 (2003) 983 Search in Google Scholar

6 Marc, E.; Steffen, S.: QOM – Quick Ontology Mapping, Proc. Int. Conf. Semantic Web, Springer Berlin Heidelberg, 2004, Vol. 3298, p 683 Search in Google Scholar

7 Zhong, Q.; Li, H.; Li, J.; Xie, G.; Tang, J.; Zhou, L.; Yue, P.: A gauss function based approach for unbalanced ontology matching. Proc. Int. Conf. Management of data, ACM, 2009, p. 669 Search in Google Scholar

8 Cruz, I. F.; AntonelliF. P.; Stroe, C.: Efficient selection of mappings and automatic quality-driven combination of matching methods. Proc. Int. Conf. Ontology Matching, 2009, Vol. 551, p. 49 Search in Google Scholar

9 Shvaiko, P.; Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Transactions on knowledge and data engineering25 (2013) 158 Search in Google Scholar

10 Xue, X.; Wang, Y.: Ontology alignment based on instance using NSGA-II. Journal of Information Science41 (2015) 58 Search in Google Scholar

11 Ujwala, B.; Durbha, S. S.: Pareto optimization for Multi Objective Matching of Geospatial Ontologies, IEEE International. Geoscience and Remote Sensing Symposium, 2013, p 1159 Search in Google Scholar

12 Min, L.; Yuzhen, L.: A dynamic evolutionary multi-objective optimization algorithm based on decomposition and adaptive diversity introduction. Proc. Int. Conf. Natural Computation Fuzzy Systems and Knowledge Discovery, 2016, p. 235 Search in Google Scholar

13 Meenachi, N. M.; Sai Baba, M.: A survey on usage of ontology in different domains. International Journal of Applied Information Systems4 (2012) 46 Search in Google Scholar

14 Meenachi, N. M.; Sai Baba, M.: Development of KMNuR: A Semantic Web based knowledge management portal for nuclear domain. DESIDOC Journal of Library & Information Technology34 (2014) 426 Search in Google Scholar

15 Meenachi, N. M.; Sai Baba, M.: Web ontology language editors for semantic web: A survey. International Journal of Computer Application53 (2012) 12 Search in Google Scholar

16 Meenachi, N. M.; Prasad, N. H.; Sai Baba, M.: Quick mapping evaluator – Application for ontology mapping evaluation: a case study on nuclear reactor domain. International Journal of Nuclear Knowledge Management6 (2016) 143 Search in Google Scholar

17 Kalfoglou, Y.; Schorlemmer, M.: Ontology mapping: the state of the art. The Knowledge Engineering Review18 (2003) 1 Search in Google Scholar

18 Leung, N. K.; Kang, S. H.; Lau, S. K.; Fan, J.: Ontology matching techniques: a 3-tier classification framework. International Journal of the Computer, the Internet and Management19 (2009) 67 Search in Google Scholar

19 Choi, N.; Song, I. Y.; Han, H.: A survey on ontology mapping. ACM Sigmod Record35 (2006) 3410.1145/1168092.1168097 Search in Google Scholar

20 Shvaiko, P.; Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Transactions on knowledge and data engineering25 (2013) 158 Search in Google Scholar

21 Shvaiko, P.; Euzenat, J.: A survey of schema-based matching approaches. Journal on data semantics. Springer Berlin Heidelberg. (2005) 146 Search in Google Scholar

22 Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C. M.; Da Fonseca, V. G.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on evolutionary computation7 (2003) 117 Search in Google Scholar

23 Pham, M. T.; Zhang, D.; Koh, C. S.: Multi-guider and cross-searching approach in multi-objective particle swarm optimization for electromagnetic problems. IEEE Transactions on Magnetics48 (2012) 539 Search in Google Scholar

24 Marler, R. T.; Arora, J. S.: Survey of multi-objective optimization methods for engineering. Structural and multidisciplinary optimization26 (2004) 369 Search in Google Scholar

25 Blasch, E. P.; Dorion, E.; Valin, P; Bossé, E.: Ontology alignment using relative entropy for semantic uncertainty analysis. Proc. Int. Conf. IEEE Aerospace and Electronics Conference, 2010, July p. 140 Search in Google Scholar

26 Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C. M.; Da Fonseca, V. G.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on evolutionary computation7 (2003) 117 Search in Google Scholar

27 Chen, J.; Sayed, A. H.: Distributed Pareto optimization via diffusion strategies. IEEE Journal of Selected Topics in Signal Processing7 (2013) 205 Search in Google Scholar

28 Marler, R. T.; Arora, J. S.: Survey of multi-objective optimization methods for engineering. Structural and multidisciplinary optimization, 26 (2004) 369 Search in Google Scholar

29 Haeri, S. H.; Abolhassani, H.; Qazvinian, V.; Hariri, B. B.: Coincidence-based scoring of mappings in ontology alignment. Journal of Advanced Computational Intelligence11(2007) Search in Google Scholar

30 Winkler, W. E.: String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter Model of Record Linkage. Proc. Section on Survey Research, 1990, p. 354 Search in Google Scholar

31 Needle, S. B. and Wuksch, C. D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology48 (1970) 443 Search in Google Scholar

32 Sørensen, T.: A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biol. Skr., 5(1948)1 Search in Google Scholar

33 Haeri, S. H.; Abolhassani, H.; Qazvinian, V.; Hariri, B. B.: Coincidence-based scoring of mappings in ontology alignment. Journal of Advanced Computational Intelligence11(2007) Search in Google Scholar

34 Cohen, W.; Ravikumar, P.; Fienberg, S.: A comparison of string metrics for matching names and records. In KDD workshop on data cleaning and object consolidation, August, 2003, Vol. 3, p. 73 Search in Google Scholar

35 Nikolov, A.; Uren, V.; Motta, E.; De Roeck, A.: Integration of semantically annotated data by the KnoFuss architecture. Proc. Int. Conf. Knowledge Engineering and Knowledge Management, Springer Berlin Heidelberg, September, 2008, p. 265 Search in Google Scholar

36 Martins, W. S.; Del Cuvillo, J.; Useche, F. J.; Theobald, K. B.; Gao, G. R.: A multithreaded parallel implementation of a dynamic programming algorithm for sequence comparison. In Pacific Symposium on Biocomputing. January, 2001, Vol. 6, p. 311 Search in Google Scholar

37 Naveed, T.; Siddiqui, I. S.; Ahmed, S.: Parallel needleman-wunsch algorithm for grid. Proc. Int. Conf. High Capacity Optical Networks and Enabling Technologies, December, 2005 Search in Google Scholar

38 Che, S.; Sheaffer, J. W.; Skadron, K.: Dymaxion: Optimizing memory access patterns for heterogeneous systems. Proc. Int. Conf. ACM high performance computing, networking, storage and analysis, November, 2011, p. 13 Search in Google Scholar

39 Che, S.; Li, J.; Sheaffer, J. W.; Skadron, K.; Lach, J.: Accelerating compute-intensive applications with GPUs and FPGAs. Proc. Int. Conf. IEEE Application Specific Processors, June, 2008, p. 101 Search in Google Scholar

40 Yamamoto, E.; Kishida, M.; Takenami, Y.; Takeda, Y.; Umemura, K.: Dynamic programming matching for large scale information retrieval. Proc. Int. Conf. Information retrieval with Asian languages, July, 2003, Vol.11, p. 100 Search in Google Scholar

41 Chen, J. Y.; Hershey, J. R.; Olsen, P. A.; Yashchin, E.: Accelerated Monte Carlo for Kullback-Leibler divergence between Gaussian mixture models. Proc. Int. Conf. IEEE Acoustics, Speech and Signal Processing, March, 2008, p. 4553 Search in Google Scholar

42 Canali, C.; Lancellotti, R.: Balancing Accuracy and Execution Time for Similar Virtual Machines Identification in IaaS Cloud. Proc. Int. Conf. IEEE WETICE, June, 2014, p. 137 Search in Google Scholar

43 Lewis, J., Ossowski, S., Hicks, J., Errami, M.; Garner, H. R.: Text similarity: an alternative way to search MEDLINE. Bioinformatics, 22(2006)2298 Search in Google Scholar

44 Vermaas, R.; Vandic, D.; Frasincar, F.: Incremental cosine computations for search and exploration of tag spaces. Database and Expert Systems Applications (2012) 156 Search in Google Scholar

45 Kumar, K. S.; Babu, A.; Anandapadmanaban, B.; Srinivasan, G.: Twenty five years of operating experience with the fast breeder test reactor. Energy Procedia7 (2011) 323 Search in Google Scholar

46 Giménez, F. M.; Collazos, P. M. M.; Moralejo, I. A.; Giménez, C. A.: Multiobjective evolutionary algorithms: Pareto rankings. Proc. Int. Conf. Jornadas Zaragoza-Pau de Matemática Aplicada y Estadística, 17–18 September, 2001, p. 27–36 Search in Google Scholar

Received: 2017-05-09
Published Online: 2017-12-09
Published in Print: 2017-12-18

© 2017, Carl Hanser Verlag, München