Abstract
Spent fuel production is one of the main problems of nuclear power plants that should be managed properly considering the strategy of each country. Today, in most of nuclear power owner countries, the interim storage has been selected as the temporary solution of spent fuel management because of absence of deep geological repositories and no tendency for reprocessing. On the other side, considering the merits of storage in dual purpose casks based on dry storage, this method was chosen for interim storage. By taking into account that the only operating reactor of Iran is of Water-Water Energetic Reactor (WWER)-1000 type, proposed TK-13 cask by Russia which is the manufacturer of these types of reactors has been considered. In this study, the calculation of basket holding spent fuel assembly criticality of this cask has been analyzed for two modes of fresh and spent fuel by ORIGEN2.1 and MCNPX2.6 nuclear codes. The criterion of the nuclear criticality safety for effective multiplication factor (keff) should be 0.95 and 0.98 for many ordinary and accident conditions, respectively. Therefore, the results show that a cylindrical basket with 66 cm diameter and 28 cm pitch with internal holding basket made of borated steel with 0.1% borate and steel free from borate would meet the criticality of cask, respectively.
Kurzfassung
Der Umgang mit abgebrannten Brennelementen ist eines der Hauptprobleme bei Kernkraftwerken, das in jedem Land mit kerntechnischen Anlagen in geeigneter Art und Weise gemanagt werden muss. In den meisten dieser Länder wurde aufgrund fehlender geeigneter geologischer Tiefenformationen bzw. entsprechender Wiederaufarbeitungsanlagen die Zwischenlagerung als zeitlich begrenzte Lösung für die Aufbewahrung von abgebrannten Brennelementen gewählt. Für trockene Zwischenlagerung wurde die Aufbewahrung unter Verwendung von entsprechenden Lagerbehältern gewählt. Unter Berücksichtigung, dass der einzige in Betrieb befindliche Reaktor im Iran vom Typ WWER-1000 ist, wurde der von Russland vorgeschlagene und für die Brennelemente dieses Reaktortyps hergestellte Behälter TK-13 betrachtet. In dieser Studie wurde die Berechnung der Kritikalität von Brennelementen in Behältertragkörben vorgenommen. Die Analysen wurden sowohl für frische als auch abgebrannte Brennelemente unter Verwendung von ORIGEN2.1- und MCNPX2.6-Rechencodes durchgeführt. Als Kriterium für die Kritikalitätssicherheit diente der effektive Multiplikationsfaktor (keff) 0.95 bzw. 0.98 für normale Betriebs- bzw. Störfallbedingungen. Die Ergebnisse zeigen, dass ein Zylinderbehälter mit 66 cm Durchmesser und 28 cm Tragekorb aus boriertem Stahl mit 0.1% boriertem und borfreiem Stahl die Kritikalitätskriterien erfüllen würde.
References
1 IAEA: Nuclear Energy Series No. NF-T-3.5, Reports Costing of Spent Nuclear Fuel Storage, 2009Search in Google Scholar
2 IAEA: Spent fuel management options for research reactors in Latin America. TECDOC-1508-June, 2006Search in Google Scholar
3 IAEA: Implementation of burn up credit in spent fuel management systems. TECDOC-1013, 1997Search in Google Scholar
4 Center of Russian research: Description of fresh and spent fuel storage at Balakovo NPP. Oak Ridge National Laboratory, DE-AC05-00OR22725, 2001Search in Google Scholar
5 Yordanov, A.; Haralampieva, T.; Mihaylov, N.; Manolova, M.: Criticality Safety Analysis of WWER-1000 Spent Nuclear Fuel Storage, BgNS Transactions, Vol. 20, No. 1, pp. 49–53, 2015, ISSN 1310-8727, Reference Number 46114516Search in Google Scholar
6 Denise, B. P.: MCNPX2.6 User's Manual Version 2.6.0. Los Alamos National Laboratory, LA- CP-07-1473, 2008Search in Google Scholar
7 IAEA Safety Glossary, Terminology Used in Nuclear Safety and Radiation Protection 2016 revisionSearch in Google Scholar
8 NISA, Criticality Safety, Qualification Standard Reference Guide, April 2011Search in Google Scholar
9 Mohammadi, M.; Hassanzadeh, M.; Gharib, M.: Shielding calculation and criticality safety analysis of spent fuel transportation cask in research reactors, journal Applied Radiation and Isotopes108 (2016) 129–132 PMid: 26720262; 10.1016/j.apradiso.2015.12.045Search in Google Scholar PubMed
10 BNPP FSAR, Atomic Energy Organization of Iran, Technical Report, Tehran, Iran, 2007Search in Google Scholar
11 Allen, G.: A User's Manual For The ORIGEN2.1 Computer Code, ORNL/TM-7175 (CCC-371), Oak Ridge National Laboratory, July 1980Search in Google Scholar
12 Hiland, P. L.; Taylor, R. M.: Regulatory Issues Regarding Criticality Analysis for Spent Fuel Pools and Independent Spent Fuel Storage Installations, U. S. NRC-10, 2005Search in Google Scholar
13 IAEA: Safety Series No. 6, Regulations for the safe transport of radioactive materials, International Atomic Energy Agency Vienna, 1985Search in Google Scholar
14 IAEA: Standard Safety Series, Regulations for the safe transport of radioactive materials, International Atomic Energy Agency Vienna, 2005Search in Google Scholar
15 IAEA: Standard Safety Series, Transportation of Spent Research Reactor Fuel to USA, Phoenix, AZ, March 3, 2011Search in Google Scholar
16 IAEA: TECDOC-1081 Spent Fuel Storage and Transport Cask Decontamination and Modification, 1999Search in Google Scholar
17 U.S. Nuclear Regulatory Commission, NUREG-1617, Standard Review Plan for Transportation Packages for Spent Nuclear Fuel, Final Report, 2000Search in Google Scholar
18 IAEA: Safety Guide NS-G-1.4, Design of Fuel Handling and Storage Systems in Nuclear Power Plants, 2003Search in Google Scholar
19 Canada's Nuclear Regulator: Guidance for Nuclear Criticality Safety, GD-327, December 2010Search in Google Scholar
20 DOE: Spent Nuclear Fuel Measurements–PNNL-23561, 2014, Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830Search in Google Scholar
© 2017, Carl Hanser Verlag, München