Abstract
Although radiation exposures in manned space missions are normally below the limits recommended to NASA by NCRP, in long-duration deep space exploratory missions astronauts may receive relatively high doses of ionizing radiation. Novel light polyethylene-based composites can be considered as effective radiation shields in space explorations. However, normally these composites cannot provide desired mechanical properties. Over the past several years our laboratories have focused on developing efficient methods for both physical and biological protection of the crew in long term space missions. In this study carbon nanotubes and either nano-sized or micro-sized boron carbide (B4C) fillers were incorporated into the continuous phase of low density polyethylene (LDPE). In the next phase, the mechanical characteristics of the composites as well as their neutron attenuation properties were studied. Findings of this study indicated enhanced mechanical properties accompanied by an enhanced shielding efficiency for neutrons at some specific weight fraction of the fillers.
Kurzfassung
Obwohl die Strahlenexposition bei bemannten Raumflügen normalerweise unter den von der NCRP der NASA empfohlenen Grenzwerten liegt, könnten Astronauten bei Langzeitweltraumflügen relative hohe Dosen ionisierender Strahlung erhalten. Neue, leichte Verbundwerkstoffe auf Polyethylen-Basis können als effektive Abschirmung in der Weltraumforschung betrachtet werden. Diese Verbundwerkstoffe haben jedoch oft nicht die nötigen mechanischen Eigenschaften. In den letzten Jahren haben sich unsere Laboratorien auf die Entwicklung von effizienten Methoden zum physikalischen und biologischen Schutz der Crew bei Langzeitweltraumflügen konzentriert. Im vorliegenden Beitrag wurden Kohlenstoffnanoröhren und Borkarbid (B4C)-Füllungen in Nano- bzw. Mikrogröße in die kontinuierliche Phase von Polyethylen niedriger Dichte (LDPE) einbezogen. In der nächsten Phase wurden die mechanischen Eigenschaften der Kompositen und ihre Neutronenschwächungseigenschaften untersucht. Die Ergebnisse dieser Studie zeigten verbesserte mechanische Eigenschaften mit verstärkter Abschirmwirkung für Neutronen bei einigen spezifischen Gewichtsanteilen der Füllungen.
References
1 Mancusi, D.; Bertucci, A.; Gialanella, G.; Grossi, G.; Manti, L.; Pugliese, M.; Rusek, A.; Scampoli, P.; Sihver, L.; Durante, M.: Comparison of aluminum and lucite for shielding against 1 GeV protons. Advances in Space Research40581–585 (2007) 10.1016/j.asr.2006.11.033Search in Google Scholar
2 Townsend, L. W.: Implications of the space radiation environment for human exploration in deep space. Radiat Prot Dosimetry115 (2005) 44–50 PMid: 16381680; 10.1093/rpd/nci141Search in Google Scholar
3 van Oostveldt, P.; De Vos, W.; Dieriks, B.: Interplanetary Space Travel and Long-Term Habitation on Mars. Journal of Cosmology12 (2010) 4113–4120Search in Google Scholar
4 Badhwar, G. D.; Keith, J. E.; Cleghorn, T. F.; Badhwar, G. D.: Neutron measurements onboard the space shuttle. Address: NASA Lyndon B. Johnson Space Center, SN 2101 NASA Road 1, Houston, TX 77058-3696, USA. gautam.d.badhwar@jsc.nasa.gov Radiat Meas.33 (2001) 235–4110.1016/S1350-4487(00)00159-1Search in Google Scholar
5 Cucinotta, F. A.; Kim, Myung-Hee Y.; Chappell, L. J.: Evaluating Shielding Approaches to Reduce Space Radiation Cancer Risks. Lyndon B. Johnson Space Center, NASA, (2012)Search in Google Scholar
6 Borggräfe, A.; Quatmannb, M.; Nölkeb, D.: Radiation protective structures on the base of a case study for a manned Mars mission. Acta Astronautica65 (2009) 1292–130510.1016/j.actaastro.2009.03.025Search in Google Scholar
7 Guetersloh, S.; Zeitlin, C.; Heilbronn, L.; Miller, J.; Komiyama, T.; Fukumura, A.; Iwata, Y.; Murakami, T.; Bhattacharya, M.: Polyethylene as a radiation shielding standard in simulated cosmic-ray environments. Nuclear Instruments and Methods in Physics Research B252 (2006) 319–33210.1016/j.nimb.2006.08.019Search in Google Scholar
8 Li, Z.; Nambiar, S.; Zheng, W.; Yeow, J. T. W.: PDMS/single-walled carbon nanotube composite for proton radiation shielding in space applications. Materials Letters 10879–83 (2013) 10.1016/j.matlet.2013.06.030Search in Google Scholar
9 Zhamu, A. et al.: Adhesion and mechanical property characterization of reactive graphitic nanofibers reinforced epoxy as composite matrix. In Proceedings of the American Society for Composites45 (2010) 1–45Search in Google Scholar
10 Harrison, C.; Burgett, E.; Hertel, N.: Polyethylene/Boron Composites for Radiation Shielding Applications. Space Technology and Applications International Forum, American Institute of Physics (2008)10.1063/1.2845006Search in Google Scholar
11 Harrison, C.; Weaver, S.; Bertelsen, C. et al.: Polyethylene/boron nitride composites for space radiation shielding. Journal of Applied Polymer Science109 (2008) 2529–253810.1002/app.27949Search in Google Scholar
12 Suri, A. K.; Subramanian, C.: Preparation of Enriched Boron and Boron Carbide Department of Atomic Energy. Government of India (2007)Search in Google Scholar
13 Bigdeloo, J. A.; HadianA. M.: Synthesis of High Purity Micron Size Boron Carbide Powder from B2O3/C Precursor. International Journal of Recent Trends in Engineering 1 (2009)Search in Google Scholar
14 Mylvaganam, K.; Zhang, L. C.: Fabrication and Application of Polymer Composites Comprising Carbon Nanotubes. Recent Patents on Nanotechnology1 (2007) 59–65 PMid: 19076021; 10.2174/187221007779814826Search in Google Scholar PubMed
© 2017, Carl Hanser Verlag, München