Abstract
After spent fuel assemblies have been discharged from the reactor, reactivity will fluctuate as the cooling period progresses because of changes in the number density of fissile nuclides and neutron absorber nuclides. The purpose of this project was (1) to quantify the contribution of each individual nuclide to the reactivity of the fissile system, (2) to identify nuclides that are responsible for the fluctuation in reactivity, and (3) to determine the effect of the number of nuclides on reactivity. This paper will present the results of the study of the behaviour of the keff with respect to variation in the duration of the cooling period during storage.
Kurzfassung
Nach dem Entladen abgebrannter Brennelemente aus einem Reaktor schwankt die Reaktivität mit fortschreitender Kühlung wegen Änderung der Teilchenzahldichte der Spaltnuklide und der Neutronenabsorbernuklide. Zweck der Untersuchungen im vorliegenden Beitrag war es, (1) den Beitrag eines jeden individuellen Radionuklids zur Reaktivität des Spaltsystems zu identifizieren, (2) Nuklide, verantwortlich für die Reaktivitätsschwankungen zu identifizieren, und (3) den Effekt der Anzahl der Nuklide auf die Reaktivität zu bestimmen. Dieser Beitrag stellt die Ergebnisse der Untersuchungen des Verhaltens von keff in Bezug auf Schwankungen bei der Abkühldauer während der Lagerung vor.
References
1 Leotlela, M. J.; Malgas, I.; Taviv, E.: Sensitivity analysis of parameters important to nuclear criticality safety of Castor X/28 F spent nuclear fuel casks. Kerntechnik80 (2015) 485–49310.3139/124.110541Search in Google Scholar
2 Nichols, A. L.; Aldama, D. L.; Verpelli, M.: Handbook of nuclear data for safeguards: database extension, August 2008. Vienna, Austria: International Atomic Energy Agency, 2008Search in Google Scholar
3 Wagner, J. C.; DeHart, M. D.; Parks, C. V.: Recommendations for addressing axial burnup in PWR burnup credit analyses. Washington: US Nuclear Regulatory Commission, NUREG/CR-6801, 2003Search in Google Scholar
4 Leotlela, M. J.; Taviv, E.; Mkhize, Z.: Preferential water ingress into a dry spent fuel cask. Journal of Nuclear Energy Science & Power Generation Technology5 (2016)10.4172/2325-9809.1000159Search in Google Scholar
5 Suto, T.; Bowman, S. M.; Parks, C. V.: Reactivity effects of nuclide buildup and decay during long-term fuel storage. Las Vegas, Nevada: International High level Radioactive Waste Management Conference, 1994Search in Google Scholar
6 Leinweber, G. et al.: Thermal cross section of Europium from neutron capture and transmission measurements. Transaction of the American Nuclear Society, San Diego, November 11, 2012, Vol. 107Search in Google Scholar
7 Leinweber, G. et al.: Neutron capture cross-section measurement and resonance parameters of gadolinium. Nuclear Science and Engineering154 (2005) 261–27910.13182/NSE05-64Search in Google Scholar
8 Parks, C. V. et al.: US Regulatory Research Program for Implementation in Transport Cask. International Symposium on Packaging and Transportation of Radioactive Material (PATRAM2001), Chicago, 2001Search in Google Scholar
9 Leotlela, M. J.; Petr, I.; Malgas, I.: Effects of the location of a misloaded fuel assembly on the neutron multiplication factor of CASTOR X/28F Spent fuel cask. International Nuclear Safety Journal4 (2015) 5–10Search in Google Scholar
10 Leotlela, M. J.: Criticality safety analysis of the design of spent fuel cask, its manipulation and placement in a long-term storage. [ed.] Alexa Barnby. A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg in fulfilment of the requirements for the degree of Doctor of Philosophy, University of the Witwatersrand, Johannesburg, 2016Search in Google Scholar
© 2017, Carl Hanser Verlag, München