Abstract
The Condensate and Feedwater System of the Chinshan BWR units is used to provide reliable and high-quality water to maintain the reactor water level during operation. If a Loss of Feedwater Heating (LFWH) event occurs, the core inlet subcooling increases and then induces corresponding power excursion and the reactor pressure rise. In the Chinshan Final Safety Analysis Report (FSAR), a loss of the feedwater temperature of 55.6°C (100°F) is conservatively assumed in the event. This study analyzes the integral reactor system response with RETRAN. Furthermore, a partial vessel model (PVM) of CFD is used to acquire the conditions of the fuel channel inlet to compensate the weakness of the RETRAN system model to generate detailed thermal-hydraulic conditions. The evaluation shows that the feedwater temperature drop is about 40°C which is lower than the FSAR value. In addition, the sensitivity study shows that the hot channel method underestimates the ΔCPR about 0.025, and there is no direct relation between ΔCPR and either of inlet subcooling or power fraction in transient, which is quite different from the conclusion of the hot channel method. Finally, the sensitivity study also proves the ΔT of 55.6°C (100°F) used in FSAR analysis conservative enough to cover the worst channel with a margin of 0.015 in ΔCPR.
Kurzfassung
Das Kondensat- und Speisewassersystem des Siedewasserreaktors Chinshan gewährleistet zuverlässige Versorgung des Reaktors mit Wasser hoher Qualität während des Betriebs. Beim Ausfall eines Speisewasservorwärmers (LFHW) entsteht die Eintrittsunterkühlung und verursacht eine entsprechende Leistungsabweichung, wodurch der Druck im Reaktor steigt. Im Chinshan-Sicherheitsanalysebericht (FSAR) wird im Ereignisfall eine Speisewassertemperaturtransiente von 55.6°C (100°F) angenommen. Diese Studie analysiert das integrale Reaktorsystemverhalten mit RETRAN. Des Weiteren wird ein partielles CFD-Reaktordruckbehältermodell (PVM) verwendet, um die Schwäche des RETRAN-Modells in Bezug auf die Simulation detaillierter thermohydraulischer Bedingungen zu kompensieren. Die Auswertung zeigt, dass der Temperaturabfall des Speisewassers etwa 40°C beträgt, was niedriger als der Wert im FSAR ist. Die Sensitivitätsstudie zeigt, dass die Methode des heißen Kanals die ΔCPR um 0.025 unterschätzt und es keine direkte Beziehung zwischen ΔCPR und der Eintrittsunterkühlung gibt, was sich von den Rückschlüssen der Methode des heißen Kanals unterscheidet. Die Sensitivitätsstudie zeigt auch, dass das in der FSAR-Analyse verwendete ΔT von 55.6°C (100°F) ausreichend konservativ ist, um den schlechtesten Kanal mit einer Marge von 0.015 in ΔCPR abzudecken.
References
1 Ma, S. S.; Hsu, S. S.; Tseng, Y. S.: Evaluation of the asymmetry effect on core thermal limit for the inadvertent cold coolant injection transient in Chinshan BWR-4 Plant. Annals of Nuclear Energy78 (2015) 15–2510.1016/j.anucene.2014.12.027Search in Google Scholar
2 Tang, J. R.; Kao, P. W.: Qualification of BWR Transient Analysis. Technical Report, INER-T1989, Institute of Nuclear Energy Research Atomic Energy Council, ROC, 1994Search in Google Scholar
3 Rhodes, J. D.; Smith, K.: CASMO-4: A Fuel Assembly Burnup Program. User's Manual, SSP-01/400 Rev5, Studsvik of American, 2007Search in Google Scholar
4 Rhodes, J. D.; Digiovine, A. S.: SIMULATE-3 Advanced Three Dimensional Two Group Reactor Analysis Code. User's Manual, Studsvik/SOA-95/15, 1995Search in Google Scholar
5 Cronin, J. T.: SLICK: SIMULATE-3 Linking for Core Kinetics. User's Manual, Studsvik/SOA-95/20, 1989Search in Google Scholar
6 Paulsen, M. P. et al.: RETRAN-3D – A Program for Transient Thermal Hydraulic Analysis of Complex Fluid Flow Systems. User's Manual, NP-7450(A), Revision 6.3, 2007Search in Google Scholar
7 Kung, Y. C.; Chung, C. C.; Tang, J. R.; Chiang, S. C.: BWR Transient Analysis Methods for Chinshan NPP with RETRAN-3D. Topical Report, TITRAM/CS-STH-MOD-01-P-A, Taiwan Power Company/Institute of Nuclear Energy Research, 2006Search in Google Scholar
8 ANSYS, Inc., ANSYS FLUENT 12.0 User's Guide, 2009Search in Google Scholar
9 Ryo, Motita; Fumio, Inada: Numerical Simulations of Pressure Fluctuation at Branch Piping in BWR Main Steam Line. Proceedings of ICAPP09, Paper No. 9372, Tokyo, Japan, 200910.1115/PVP2009-77556Search in Google Scholar
10 Ferng, Y. M.; TsengY. S.; Pei, B. S.; Wang, S. L.: A Two-Phase Methodology to Predict FAC Wear Sits in The Piping System of BWR. Nuclear Engineering and Design238 (2008) 2189–219610.1016/j.nucengdes.2008.03.012Search in Google Scholar
11 Tseng, Y. S.; Wang, J. R.; Cheng, Y. H.; Shih, C. K.: Validation Study of FLUENT for the Application of Dry-Storage SystemThermal Analysis. ICAPP09, Paper 9051, Tokyo, Japan, 2009Search in Google Scholar
12 Taiwan Power Company (TPC): Startup Test #23-Feedwater Control System (Heater Loss), 1978Search in Google Scholar
13 Taiwan Power Company (TPC): Final Safety Analysis Report for Chinshan Nuclear Power Station Units 1 & 2, Amendment 13, 2013bSearch in Google Scholar
14 Taiwan Power Company (TPC): Chinshan Nuclear Power Station Safety Analysis Report for Measurement Uncertainty Recapture (MUR) Power Uprate, Revision 2, 2008Search in Google Scholar
15 Taiwan Power Company (TPC): Abnormal and Emergency Operation Procedures for Faulted Feedwater Heater for Chinshan Nuclear Power Station, No. 506.8, Revision 14, 2013aSearch in Google Scholar
© 2017, Carl Hanser Verlag, München