Accessible Requires Authentication Published by De Gruyter March 8, 2018

CFD Analysis of Rewetting Behavior in Nuclear Fuel Rod Bundle with Change in Operating Conditions

CFD-Analyse zur Wiederbenetzung von Brennelementbündeln bei unterschiedlichen Betriebsbedingungen
A. Debbarma and K. M. Pandey
From the journal Kerntechnik

Abstract

Numerical analysis on rewetting of nuclear fuel rod bundle by injecting coolant water in radial jet direction has been performed using Computational Fluid Dynamic (CFD). CFD-CFX results are compared with experimental data and an investigation is carried out for three ranges of numerical operating conditions (central water flow: 150 lpm, 225 lpm and 300 lpm; sub-cooled coolant: 288 K, 298 K and 308 K; initial wall temperature: 430 K, 500 K and 600 K). It was observed that the rewetting behavior shows an irregular pattern of rewetting progress. Rewetting velocity has got no significance under any operating conditions. The effective numerical response is observed for rewetting temperature and wetting delay. Results show an increase in rewetting temperature, and reduction in wetting delay under higher flow rate, low sub-cooling and lowering the initial wall temperature.

Kurzfassung

Das Wiederbenetzungsverhalten von Brennelementbündeln bei radialer Einspritzung von Kühlwasser wurde numerisch mit dem Computational Fluid Dynamic (CFD) CFD-CFX untersucht. Die Ergebnisse wurden mit experimentellen Daten verglichen. Im Detail wurden drei verschiedene Betriebsbedingungen untersucht: Die zentrale Wasserströmung wurde zwischen 150 lpm, 225 lpm und 300 lpm variiert, die Temperatur des unterkühlten Kühlwassers zwischen 288 K, 298 K und 308 K und die Anfangswandtemperatur betrug zwischen 430 K, 500 K und 600 K. Im Ergebnis wurde eine unregelmäßige Ausbreitung der Wiederbenetzung beobachtet. Die Wiederbenetzungsgeschwindigkeit hatte bei keiner der gewählten Betriebsbedingungen einen Einfluss. Allein die Wiederbenetzungstemperatur und die Benetzungsverzögerung zeigten einen Einfluss auf die Ergebnisse: Ein zunehmender Durchfluss bei niedrigerer Unterkühlung und niedrigerer Anfangswandtemperatur führten in den Rechnungen zu einer höheren Wiederbenetzungstemperatur und einer verringerten Benetzungsverzögerung.


* E-mail:

References

1 Carbajo, J. J.: A Study on the rewetting temperature. Nucl. Eng. Des.84 (1985) 215210.1016/0029-5493(85)90310-3 Search in Google Scholar

2 Sinha, R. K.; Kakodkar, A.: Design and development of the AHWR – the Indian thorium fuelled innovative nuclear reactor, Nucl. Eng. Des., Vol. 236, pp. 683700, 2006. 10.1016/j.nucengdes.2005.09.026 Search in Google Scholar

3 Bhabha Atomic Research Centre (BARC): Advanced Heavy Water Reactor (AHWR). Government of India, Department of Atomic Energy, http://www.barc.gov.in/reactor/ahwr.html (access on 10-08-16) Search in Google Scholar

4 Sahu, S. K.; Das, P. K.; Bhattacharyya, S.: An experimental investigation on the quenching of a hot vertical heater by water injection at high flow rate. Nucl. Eng. Des.240 (2010) 1558156810.1016/j.nucengdes.2010.02.028 Search in Google Scholar

5 Piggott, B. D. G.; White, E. P.; Duffey, R. B.: Wetting delay due to film and transition boiling on hot surfaces. Nucl. Eng. Des.36 (1976) 16918110.1016/0029-5493(76)90003-0 Search in Google Scholar

6 Thompson, T. S.: On the process of rewetting a hot surface by a falling liquid film. Nucl. Eng. Des.31 (1974) 23424510.1016/0029-5493(75)90144-2 Search in Google Scholar

7 Ragheb, H. S.; Cheng, S. C.; Groeneveld, D. C.: Observations in transition boiling of subcooled water under forced convective conditions, Int. J. Heat Mass Transf., Vol. 24, pp. 11271137, 198110.1016/0017-9310(81)90162-9 Search in Google Scholar

8 Cheng, S. C.; Lau, P. W. K.; Poon, K. T.: Measurements of true quench temperature of subcooled water under forced convective conditions. Int. J. Heat Mass Transf.28 (1985) 23524310.1016/0017-9310(85)90025-0 Search in Google Scholar

9 Mozumder, A. K.; Monde, M.; Woodfield, P.L.: Delay of wetting propagation during jet impingement quenching for a high temperature surface. Int. J. Heat Mass Transf.48 (2005) 5395540710.1016/j.ijheatmasstransfer.2005.06.034 Search in Google Scholar

10 Chen, W. J.; Lee, Y.; Groeneveld, D. C.: Measurement of boiling curves during of a hot circular duct. Int. J. Heat Mass Transf.22 (1979) 97397610.1016/0017-9310(79)90039-5 Search in Google Scholar

11 Wolf, D. H.; Incropera, F. P.; Viskanta, R.: Local jet impingement boiling heat transfer. Int. J. Heat Mass Transf.39 (1996) 1395140610.1016/0017-9310(95)00216-2 Search in Google Scholar

12 LiuZ.-H.; Wang, J.: Study on film boiling heat transfer for water jet impinging on high temperature flat plate. Int. J. Heat Mass Transf.44 (2001) 2475248110.1016/S0017-9310(00)00281-7 Search in Google Scholar

13 Saxena, A. K.; Raj, V. V.; Rao, V. G.: Experimental studies on rewetting of hot vertical annular channel. Nucl. Eng. Des.208 (2001) 28330310.1016/S0029-5493(01)00356-9 Search in Google Scholar

14 Timm, W.; Weinzierl, K.; Leipertz, A.: Heat transfer in subcooled jet impingement boiling at high wall temperatures. Int. J. Heat Mass Transf.46 (2003) 1385139310.1016/S0017-9310(02)00416-7  Search in Google Scholar

15 Hammad, J.; Mitsutake, Y.; Monde, M.: Movement of maximum heat flux and wetting front during quenching of hot cylindrical block. Int. J. Therm. Sci.,43 (2004) 74375210.1016/j.ijthermalsci.2004.02.014 Search in Google Scholar

16 Woodfield, P. L.; Monde, M.; Mozumder, A. K.: Observations of high temperature impinging-jet boiling phenomena. Int. J. Heat Mass Transf.48 (2005) 2032204110.1016/j.ijheatmasstransfer.2004.12.011 Search in Google Scholar

17 Xu, F.; Gadala, M. S.: Heat transfer behavior in the impingement zone under circular water jet. Int. J. Heat Mass Transf.49 (2006) 3785379910.1016/j.ijheatmasstransfer.2006.03.034 Search in Google Scholar

18 Lallave, J. C.; Rahman, M. M.; Kumar, A.: Numerical analysis of heat transfer on a rotating disk surface under confined liquid jet impingement. Int. J. Heat Fluid Flow28 (2007) 72073410.1016/j.ijheatfluidflow.2006.09.005 Search in Google Scholar

19 Agrawal, C.; Lyons, O. F.; Kumar, R.; Gupta, A.; Murray, D. B.: Rewetting of a hot horizontal surface through mist jet impingement cooling. Int. J. Heat Mass Transf.58 (2013) 18819610.1016/j.ijheatmasstransfer.2012.10.079 Search in Google Scholar

20 Patil, N. D.; Das, P. K.; Bhattacharyya, S.; SahuS. K.: An experimental assessment of cooling of a 54-rod bundle by in-bundle injection. Nucl. Eng. Des.250 (2012) 50051110.1016/j.nucengdes.2012.05.017 Search in Google Scholar

21 Kumar, M.; Mukhopadhyay, D.; Ghosh, A. K.; Kumar, R.: Study on Influence of Rewetting on Conduction Heat Transfer for AHWR Fuel Bundle Re-flooding Phenomena. Int. J. Nucl. Energy Sci. Eng.3 (2013) 859410.14355/ijnese.2013.0304.02 Search in Google Scholar

22 Kumar, M.; Mukhopadhyay, D.; Ghosh, A. K.; Kumar, R.: Numerical Study on Influence of Cross Flow on Rewetting of AHWR Fuel Bundle. Sci. World J.2014 (2014) 110 25405235 10.1155/2014/141328 Search in Google Scholar

23 DebbarmaA.; Pandey, K. M.: NumericalAnalysis on the Effect of Flow Rates and Jet Diameter in Rewetting Vertical Nuclear Fuel Bundle with Jet Impingements. Annals of Nuclear Energy94 (2016) 51852910.1016/j.anucene.2016.04.023 Search in Google Scholar

24 DebbarmaA.; Pandey, K. M.: Influenceon rewetting temperature and wetting delay during rewetting rod bundle byvarious radialjet models. Kerntechnik81 (2016) 505910.3139/124.110571 Search in Google Scholar

25 DebbarmaA.; Pandey, K. M.: CFD Analysis of Rewetting of a Single Sector AHWR Fuel Cluster with Changing Jet Directions. Nucl. Eng. Des.308 (2016) 515910.1016/j.nucengdes.2016.08.007 Search in Google Scholar

26 Carbajo, J. J.: Parametric study on rewetting velocities obtained with a two-dimensional heat conduction code. Nucl. Eng. Des.92 (1986) 698710.1016/0029-5493(86)90100-7 Search in Google Scholar

27 Duffey, R. B.; Porthouse, D. T. C.: The physics of rewetting in water reactor emergency core cooling. Nucl. Eng. Des.25 (1973) 37939410.1016/0029-5493(73)90033-2 Search in Google Scholar

28 Elias, E.; Yadigaroglu, G.: A general one-dimensional model for conduction-controlled rewetting of a surface. Nucl. Eng. Des.42 (1977) 18519410.1016/0029-5493(77)90180-7 Search in Google Scholar

29 Bernardin, J. D.; Stebbins, C. J.; Mudawar, I.: Mapping of impact and heat transfer regimes of water drops impinging on a polished surface, Int. J. Heat Mass Transfer40 (1997) 24726710.1016/0017-9310(96)00119-6 Search in Google Scholar

30 Sinha, J.: Effects of Surface Roughness, Oxidation Level, and Liquid Subcooling on the Minimum Film Boiling Temperature. Exp. Heat Transf.16 (2003) 456010.1080/08916150303749 Search in Google Scholar

31 Filipovic, J.; Incropera, F. P.; Viskanta, R.: Rewetting Temperatures and Velocity in a Quenching Experiment. Exp. Heat Transf.8 (1995) 25727010.1080/08916159508946505 Search in Google Scholar

Received: 2017-08-14
Published Online: 2018-03-08
Published in Print: 2018-03-19

© 2018, Carl Hanser Verlag, München