Abstract
The theoretical prediction of the cross-sections in the determination of the structure materials used in the fission and fusion technology is very important in terms of reactor safety. Also, theoretical cross-sections are necessary to evaluate the performance of structure materials, especially, in the lack or absence of experimental data. Nickel base alloys are one of the wide ranges of structural materials used in fission and fusion reactors. Therefore, the excitation functions of the (n, 2n) reactions on the structure material nickel with neutrons producing via fusion reactions are investigated in this study. Thus, the excitation functions for 58,60 – 62,64Ni(n, 2n) reactions are calculated using some pre-equilibrium models which are the hybrid, the geometry depended hybrid and the two-component excitation models. The calculations are performed in the ALICE/ASH and the Talys 1.8 codes. Also, the equilibrium and pre-equilibrium effects on these reactions are investigated in this study. The obtained cross-sections are discussed and compared with the experimental data and the theoretical predicted data.
Kurzfassung
Die theoretische Vorhersage der Querschnitte bei der Bestimmung der in der Spalt- und Fusionstechnik verwendeten Strukturwerkstoffe ist für die Reaktorsicherheit von großer Bedeutung. Auch theoretische Querschnitte sind notwendig, um die Performance der Strukturmaterialien zu bewerten, vor allem dann, wenn experimentellen Daten nicht ausreichend sind oder vollständig fehlen. Nickelbasislegierungen sind eines der zahlreichen Strukturmaterialien, die in Spalt- und Fusionsreaktoren verwendet werden. Daher werden in dieser Studie die Anregungsfunktionen der (n, 2n)-Reaktionen auf das Strukturmaterial Nickel mit Neutronen, die über Fusionsreaktionen erzeugt werden, untersucht. Dabei werden die Anregungsfunktionen für 58,60 – 62,64Ni(n, 2n)-Reaktionen mit Hilfe von Vor-Gleichgewichtsmodellen berechnet. Dazu werden Hybrid-, geometrie-abhängige Hybrid- und Zweikomponenten-Anregungsmodelle verwendet. Die Berechnungen werden mit den Codes ALICE/ASH und Talys 1.8 durchgeführt. Auch die Gleichgewichts- und Vor-Gleichgewichtseffekte auf diese Reaktion werden in dieser Studie untersucht. Die erhaltenen Querschnitte werden diskutiert und mit den experimentellen Daten und den theoretisch vorhergesagten Daten verglichen.
References
1 Copson, H., R.; Berry, W., E.: Corrosion of Inconel Nickel-Chromium Alloy in Primary Coolants of Pressurized Water Reactors. 17th Annual Conference of National Association of Corrosion Engineers 22–26 (1962)10.5006/0010-9312-18.1.21Search in Google Scholar
2 Institute, N. Nuclear Energy. Nickel Institute. Available at: http://www.nickelinstitute.org/en/NickelUseInSociety/MaterialsSelectionAndUse/EnergyAndPower/NuclearEnergy.aspx (2018)Search in Google Scholar
3 Yiğit, M.; Tel, E.; Tanır, G.: Calculations of (n,α) Cross Sections on Some Structural Fusion Materials for Fusion Reactor Technology. J. Fusion Energy32 (2013) 336–34310.1007/s10894-012-9569-6Search in Google Scholar
4 Dupont, J. N.: Welding of Nickel-based alloys for energy applications. Weld. J.93 (2014) 31s–45sSearch in Google Scholar
5 Tel, E.: Study on Some Structural Fusion Materials for (n,p) Reactions up to 30 MeV Energy. J. Fusion Energy29 (2010) 332–33610.1007/s10894-010-9277-zSearch in Google Scholar
6 Uğur, F. A.; Tel, E.; Gökçe, A. A.: A Study on 19F(n,α) Reaction Cross Section. J. Fusion Energy32 (2013) 414–41810.1007/s10894-012-9587-4Search in Google Scholar
7 Tel, E.; Ugur, F. A.; Gokce, A. A.: Alpha induced reaction cross section calculations of tantalum nucleus. J. Fusion Energy32 (2013) 304–31010.1007/s10894-012-9550-4Search in Google Scholar
8 Tel, E.; Kara, A.: Neutron, Proton and Alpha Emission Spectra of Nickel Isotopes for Proton Induced Reactions. J. Fusion Energy31 (2012) 257–26110.1007/s10894-011-9470-8Search in Google Scholar
9 Şahin, S.; Übeyli, M.: Modified APEX reactor as a fusion breeder. Energy Convers. Manag.45 (2004) 1497–151210.1016/j.enconman.2003.09.014Search in Google Scholar
10 Bloom, E. E.: The challenge of developing structural materials for fusion power systems. J. Nucl. Mater.258–263 (1998) 7–17Search in Google Scholar
11 Tel, E.; Durgu, C.; Akti, N. N.; Okuducu, Ş.: Calculations of excitation functions of some structural fusion materials for (n, t) Reactions up to 50 MeV energy. J. Fusion Energy29 (2010) 290–29410.1007/s10894-010-9277-zSearch in Google Scholar
12 Tel, E.; Akca, S.; Sahan, M.; Depedelen, M.; Sarpun, I. H.: The Comparison of (n,p), (n,α), (n, 2n) and (α,n) Reaction Cross-Sections for 7Li and 9Be Target Nuclei. J. Fusion Energy1–6 (2016) 10.1007/s10894-016-0094-xSearch in Google Scholar
13 Sarpün, H.; et al.: Double Differential Charged Particle Emission Cross Sections and Stopping Power Calculations for Structural Fusion Materials 58,60Ni. J. Fusion Energy34 (2015) 1306–131310.1007/s10894-015-9854-2Search in Google Scholar
14 Aydin, A.; et al.: Comparison of Level Density Models for the 60,61,62,64Ni(p, n) Reactions of Structural Fusion Material Nickel from Threshold to 30 MeV. J. Fusion Energy34 (2015) 1105–110810.1007/s10894-015-9927-2Search in Google Scholar
15 Demir, B.; et al.: Double differential cross section and stopping power calculations of light charged particle emission for the structural fusion materials 50,52Cr. J. Fusion Energy34 (2015) 808–81610.1007/s10894-015-9889-4Search in Google Scholar
16 Demir, B.; et al.: Neutron Production Cross-Section and Geant4 Calculations of the Structural Fusion Material 59Co for (α,xn) and (γ,xn) Reactions. J. Fusion Energy34, 636–641 (2015) 10.1007/s10894-015-9860-4Search in Google Scholar
17 Kaplan, A.; et al.: (3He,xn) reaction cross-section calculations for the structural fusion material 181Ta in the energy range of 14–75 MeV. J. Fusion Energy33, 510–515 (2014) 10.1007/s10894-014-9670-0Search in Google Scholar
18 Gokce, A. A.; Kara, A.; Uğur, F. A.: Alpha Emission Spectra of 27 Al, 50, 52 Cr, Nucleus for Neutron Induced Reaction Mn, Fe. J. Fusion Energy32 (2013) 389–39410.1007/s10894-012-9582-9Search in Google Scholar
19 Broeders, C. H. M.; Konobeyev, A. Yu.; Korovin, Yu. A.; Lunev, V. P.; Blann, M.: ALICE/ASH pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies. Report FZKA-7183 (2006)Search in Google Scholar
20 Koning, A.; Hilaire, S.; Goriely, S.: Talys-1.8 A Nuclear Reaction Program (2015)Search in Google Scholar
21 EXFOR. EXFOR/CSISRS (Experimental Nuclear Reaction Data File). EXFOR/CSISRS (Experimental Nuclear Reaction Data File) (2017)Search in Google Scholar
22 Brown, D.: Section, C., Working, E. & Csewg, G. Preparing for ENDF/B-VIII. (2017)10.1051/epjconf/201714602041Search in Google Scholar
23 Shibata, K.; et al.: JENDL-4.0: A New Library for Nuclear Science and Engineering. J. Nucl. Sci. Technol.48, 1–30 (2011) 10.1080/18811248.2011.9711675Search in Google Scholar
24 Ge, Z. G.; et al.: The Updated Version of Chinese Evaluated Nuclear Data Library (CENDL-3.1). J. Kor. Phys. Soc.59 (2011) 105210.3938/jkps.59.1052Search in Google Scholar
25 ROSFOND-2010. Russian evaluated neutron data library. Russian evaluated neutron data library. (2010)Search in Google Scholar
26 Blann, M.: Hybrid Model for Pre-Equilibrium Decay in Nuclear Reactions. Phys. Rev. Lett.27 (1971) 337–34010.1103/PhysRevLett.27.1550Search in Google Scholar
27 Griffin, J. J.: Statistical Model of Intermediate Structure. Phys. Rev. Lett.17 (1966) 47810.1103/PhysRevLett.17.478Search in Google Scholar
28 Harp, G. D.; Miller, J. M.; Berne, B. J.: Attainment of Statistical Equilibrium in Excited. Nuclei. Phys. Rev. (1968) 116–116810.1103/PhysRev.165.1166Search in Google Scholar
29 Blann, M.; Vonach, H. K.: Global test of modified precompound decay models. Phys. Rev. C28 (1983) 1475–149210.1103/PhysRevC.28.1475Search in Google Scholar
30 Blann, M.: Importance of the Nuclear Density Distribution on Pre-equilibrium Decay. Phys. Rev. Lett.28 (1972) 757–75910.1103/PhysRevLett.28.757Search in Google Scholar
31 Blann, M.: Preequilibrium Decay. Ann. Rev. Nucl. Sci.25 (1975) 123–16610.1146/annurev.ns.25.120175.001011Search in Google Scholar
32 Koning, A.; Hilaire, S.; Goriely, S.: Talys-1.6 User Manual. (2011)Search in Google Scholar
33 Gupta, S. K.: Two-Component Equilibration in the Exciton Model of nuclear Reactions. Z. Phys. A Atom. Nucl.303 (1981) 329–30310.1007/BF01421531Search in Google Scholar
34 Betak, E. D. J.: On the n = 0 transitions in the exciton model of nuclear reactions. J Acta Phys. Slov29 (1979) 76–78Search in Google Scholar
35 Dobeš, J.; Běták, E.: Two-component exciton model. Zeitschrift für Phys. A Atoms Nucl.310 (1983) 329–33810.1007/BF01419519Search in Google Scholar
36 Gruppelaar, H.; Nagel, P.; Hodgson, P. E.: Pre-equilibrium processes in nuclear reaction theory: the state of the art and beyond. Riv. Nuovo Cim.9 (1986) 110.1007/BF02725961Search in Google Scholar
37 Gadioli, E.; Hodgson, P. E.: Pre-equilibrium Nuclear Reactions, Oxford Univ. Press. (1992) 9967999Search in Google Scholar
38 Koning, A. J.; Duijvestijn, M. C.: A global pre-equilibrium analysis from 7 to 200 MeV based on the optical model potential. Nucl. Phys. A744 (2004)15–76 10.1016/j.nuclphysa.2004.08.013Search in Google Scholar
39 Kalbach, C.: Two-component exciton model: Basic formalism away from shell closures. Phys. Rev. C33 (1986) 818–833 9953213 10.1103/PhysRevC.33.818Search in Google Scholar
40 Mannhart, W.; Schmidt, D.: Measurement of neutron activation cross sections in the energy range from 8 MeV to 15 MeV. Wirtschaftsverl. NW, Verl. für neue Wiss, 2007Search in Google Scholar
41 Filatenkov, A. A.; Chuvaev, S. V.; Aksenov, V. N.; Jakovlev, V. A.: Systematic measurements of activation cross sections at neutron energies from 13.4–14.9 MeV. IAEA, International nuclear data committee INDC(CCP)-402 (1997)Search in Google Scholar
42 Semkova, V.; et al.: A systematic investigation of reaction cross sections and isomer ratios for neutrons up to 20 MeV on Ni-isotopes and 59Co by measurements with the activation technique and new model studies of the underlying reaction mechanisms. Nucl. Phys. A730 (2004) 255–28410.1016/j.nuclphysa.2003.11.005Search in Google Scholar
43 Uno, Y.; Uwamino, Y.; Soewarsono, T. S.; Nakamura, T.: Measurement of the Neutron Activation Cross Sections of 12C, 30Si, 47Ti, 48Ti, 52Cr, 59Co, and 58Ni Between 15 and 40 MeV. Nucl. Sci. Eng.122 (1996) 247–25710.13182/NSE96-A24159Search in Google Scholar
44 Pavlik, A.: Winkler, G.; Uhl, M.; Paulsen, A.; Liskien, H.: Neutron-Induced Reactions on 58Ni. Nucl. Sci. Eng.90 (1985) 186–20210.13182/NSE85-A17676Search in Google Scholar
45 Ngoc, P. N.; Gueth, S.; Deak, F.; Kiss, A.: Investigations of (n, p), (n, a) and (n, 2n) reactions around 14 MeV. Eotvos Lorand Univ. 1980Search in Google Scholar
46 Bayhurst, B. P.; et al.: Cross sections for (n,xn) reactions between 7.5 and 28 MeV. Phys. Rev. C12 (1975) 451–46710.1103/PhysRevC.12.451Search in Google Scholar
47 Jeronymo, J. M. F.; Mani, G. S.; Olkowski, J.; Sadeghi, A.; Williamson, C. F.: Absolute cross sections for some (N,P), (N,ALPHA) and (n, 2n) reactions. Nucl. Phys.47 (1963) 15710.1016/0029-5582(63)90862-9Search in Google Scholar
48 Adamski, L.; Herman, M.; Marcinkowski, A.: Evaluation of the Ni-58(n, 2n)Ni-57 reaction cross- sections (1977)Search in Google Scholar
49 Lapenas, A. A.; Bondars, K. J.; Ejnbergs, J. K.: Evaluated data for neutron dosimetry reactions, point data. Yad. Konstanty15 (1974) 63Search in Google Scholar
50 Shubin, Y. N.; Lunev, V. P.; Konobeyev, A. Y.; Dityuk, A. I.: Cross-Section Data Library MENDL-2 to Study Activation andTransmutation of Materials Irradiated by Nucleons of Intermediate Energies. International Nuclear Data Committee5 (1991)Search in Google Scholar
51 Audi, G.; et al.: NUBASE2012 Evaluation of Nuclear Properties. Nucl. Data Sheets36, 1157–1286 (2012) 10.1088/1674-1137/36/12/001Search in Google Scholar
52 Wallner, A.; et al.: Nuclear Data from AMS & Nuclear Data for AMS – some examples. EPJ Web Conf.35 (2012) 100310.1051/epjconf/20123501003Search in Google Scholar
53 Ruehm, W.; et al.: A new half-life determination of 59Ni. Planet. Space Sci.42 (1994) 22710.1016/0032–0633(94)90085-XSearch in Google Scholar
54 Bowers, D. L.; Greenwood, L. R.: Analysis of long-lived isotopes by liquid scintillation spectrometry. J. Radioanal. Nucl. Chem.123 (1988) 46110.1007/BF02034910Search in Google Scholar
© 2018, Carl Hanser Verlag, München