Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 8, 2018

Simulation model for centrifugal pump in flow networks based on internal characteristics

Simulationsmodell für die Berechnung von Kreiselpumpen in Rohrleitungen auf Basis internen Kenngrößen
  • J.-L. Sun , R.-J. Xue and M.-J. Peng
From the journal Kerntechnik

Abstract

For the simulation of centrifugal pump in flow network system, in general three approaches can be used, the fitting model, the numerical method and the internal characteristics model. The fitting model is simple and rapid thus widely used. The numerical method can provide more detailed information in comparison with the fitting model, but increases implementation complexity and computational cost. In real-time simulations of flow networks, to simulate the condition out of the rated condition, especially for the volume flow rate, which the accuracy of fitting model is incredible, a new method for simulating centrifugal pumps was proposed in this research. The method based on the theory head and hydraulic loss in centrifugal pumps, and cavitation is also to be considered. The simulation results are verified with experimental benchmark data from an actual pump. The comparison confirms that the proposed method could fit the flow-head curves well, and the responses of main parameters in dynamic-state operations are consistent with theoretical analyses.

Kurzfassung

Für die Simulation von Kreiselpumpen in Rohrleitungen werden im Allgemeinen drei Ansätze verwendet: das Regressionsmodell, die numerische Methode und das interne Kenngrößenmodell. Das aus experimentellen Daten abgeleitete Regressionsmodell ist einfach und schnell und daher weit verbreitet. Die numerische Methode kann im Vergleich dazu detailliertere Informationen liefern, erfordert aber einen Mehraufwand bei der Erstellung und Berechnung. In diesem Beitrag wird eine neue Methode zur Echtzeit-Simulation von Kreiselpumpen in Strömungsnetzwerken vorgeschlagen. Dabei wird nicht nur der Nennzustand, sondern der jeweils aktuelle Zustand der Pumpe, berücksichtigt. Diese neue Methode basiert auf der Berechnung der Förderhöhe und des hydraulischer Verlust bei Kreiselpumpen und berücksichtigt auch Kavitation. Die Berechnungsergebnisse werden mit experimentellen Benchmarkdaten einer realen Pumpe verifiziert. Der Vergleich bestätigt, dass die vorgeschlagene Methode mit den Experimenten und anderen Modellen übereinstimmt und so zur Berechnung der wichtigsten Parameter der dynamischen Zustände einer Kreiselpumpe herangezogen werden kann.


* E-mail:

References

1 Jafarzadeh, B.; Hajari, A.; Alishahi, M. M.; Akbari, M. H.: The flow simulation of a low-specific-speed high-speed centrifugal pump. Applied Mathematical Modelling35 (2011) 24224910.1016/j.apm.2010.05.021Search in Google Scholar

2 Choi, Y.: Performance and internal flow characteristics of a very low specific speed centrifugal pump. Journal of Fluids Engineering128 (2005) 34134910.1115/1.2169815Search in Google Scholar

3 Si, Q.; Yuan, S.; Yuan, J.; Bois, G.: Investigation on the influence of jetting equipment on the characteristics of centrifugal pump. Advances in Mechanical Engineering8 (2016) 11110.1177/1687814016660287Search in Google Scholar

4 Bai, Yu: Hydraulic design and experimental investigation of the radial diffuser on a single-stage centrifugal pump. Doctoral dissertation, Jiangsu University (2015) 2354.Search in Google Scholar

5 Wiesner, F. J.: A review of slip factors for centrifugal impellers. Journal of Engineering for Gas Turbines & Power89 (1967) 55810.1115/1.3616734Search in Google Scholar

6 Kai, W.; Qiong, L.: Correction and experimental verification of velocity circulation in a double-blade pump impeller outlet. International Journal of Fluid Machinery & Systems8 (2015) 31131710.5293/IJFMS. 2015.8.4.311Search in Google Scholar

7 Zhang, Y. L.; Zhu, Z. C.; Dou, H. S.; Cui, B. L.; Li, Y.; Xiao, J. J.: A method to determine the slip factor of centrifugal pumps through experiment. International Journal of Turbo & Jet-Engines32 (2015) 596410.1515/tjj-2014-0014Search in Google Scholar

8 Liu, H. L.; Tan, M. G.; Yuan, S. Q.; Xian-Fang, W. U.; Yang, F. G.: Precision comparison on slip factor of centrifugal pumps. Drainage & Irrigation Machinery.24 (2006) 46Search in Google Scholar

9 Thin, K. C.; Khaing, M. M.; Aye, K. M.: Design and performance analysis of centrifugal pump. Proceedings of World Academy of Science Engineering & Technology 46 (2008) 422Search in Google Scholar

10 Anagnostopoulos, J. S.: A fast numerical method for flow analysis and blade design in centrifugal pump impellers. Computers & Fluids38 (2009) 28428910.1016/j.compfluid.2008.02.010Search in Google Scholar

11 Tan, M. G.; Liu, H. L.; Yuan, S. Q.: Calculation of hydraulic loss in centrifugal pumps. Journal of Jiangsu University28 (2007) 405408Search in Google Scholar

12 Li, L.: Performance prediction and reverse design of the centrifugal pump. Master thesis, Wuhan University of Technology (2012) 3842Search in Google Scholar

13 Yang, J.; Bian, Z.; Zhong, C.; Jicheng, L. I.: Method for selecting centrifugal pump impeller outlet angle based on calculation of centrifugal pump impeller's hydraulic loss. Journal of Xihua University35 (2016) 8992Search in Google Scholar

Received: 2017-10-20
Published Online: 2018-03-08
Published in Print: 2018-03-19

© 2018, Carl Hanser Verlag, München

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.3139/124.110847/pdf
Scroll to top button