Accessible Requires Authentication Published by De Gruyter March 8, 2018

Mathematical model for prediction of droplet sizes and distribution associated with impact of liquid-containing projectile

Bestimmung der Tropfengröße und -verteilung beim Aufprall eines flüssigkeitshaltigen Geschosses
A. V. Shelke, B. Gera, N. K. Maheshwari and R. K. Singh
From the journal Kerntechnik

Abstract

After the events of 9/11, the impact of fast flying commercial aircraft is considered as major hazard threatening the Nuclear Power Plant's (NPP) safety. The study of fuel spillage phenomenon and fireball formation is important to understand fire hazards due to burning of dispersed aviation fuel. The detailed analysis of fuel dispersion is very difficult to deliberate because both, large NPP structures and the large size of commercial aircrafts. Sandia National Laboratories, USA conducted impact tests using cylindrical projectiles filled with water to measure the associated parameters. Due to combustion properties and volatile nature of hydrocarbon fuels, the obtained parameters from impact studies using water are incomplete in fire analysis of flammable droplet clouds. A mathematical model is developed for prediction of droplet sizes and distribution associated with the impact of a liquid-containing projectile. The model can predict the transient behavior of droplet cloud. It is validated with experimental data available in literature. In the present study, the analysis has been performed using water and kerosene. The data obtained can be utilized as boundary and initial condition for CFD analysis. This information is useful for fire hazard analysis of aircraft impacts on NPP structures.

Kurzfassung

Seit den Ereignissen des 11. September 2001 wird der Aufprall schnell fliegender Verkehrsflugzeuge als eine große Gefahr für die Sicherheit von Kernkraftwerken wahrgenommen. Die Untersuchung der Phänomene bei der Freisetzung von Treibstoff und der Feuerballentstehung ist wichtig, um die Auswirkungen der Verbrennung von fein verteiltem Flugtreibstoff zu verstehen. Die detaillierte Analyse der Treibstoffausbreitung ist aufgrund der großen KKW-Strukturen und der Größe der kommerziellen Flugzeuge nur sehr schwer zu bewerkstelligen. Die Sandia-National-Laboratories in den USA führten Aufprallversuche mit wassergefüllten zylindrischen Behältern durch, um die damit verbundenen Parameter zu messen. Aufgrund der Verbrennungseigenschaften und der Flüchtigkeit von Kohlenwasserstoff-Kraftstoffen sind die aus den genannten Studien mit Wasser gewonnenen Parameter bei der Brandanalyse von brennbaren Tröpfchenwolken unvollständig. Daher wurde ein mathematisches Modell für die Vorhersage der Tropfengröße und -verteilung im Zusammenhang mit dem Aufprall eines flüssigkeitshaltigen Geschosses entwickelt. Das Modell kann das transiente Verhalten der Tröpfchenwolke vorhersagen. Es wurde mit experimentellen Daten aus der Literatur validiert. In der vorliegenden Studie wurde die Analyse mit Wasser und Kerosin durchgeführt. Die aus diesem Modell gewonnenen Daten können als Anfangs- und Randbedingungen für CFD-Analysen herangezogen werden. Die Ergebnisse dieser Analysen unterstützen die Einschätzung der Brandgefahr beim Aufprall von Flugzeugen auf KKW-Strukturen.


* E-mail:

References

1 Tieszen, S. R.: Fuel dispersal modeling for aircraft-runway impact scenarios. SAND-95-2529, Sandia National Labs., Albuquerque, NM (United States), 1995 10.2172/155780 Search in Google Scholar

2 Jepsen, R. A.; Jensen, K.; O'Hern, T.: Water dispersion modeling and diagnostics for water slug impact test. In SEM X International Congress, 2004 Search in Google Scholar

3 Xu, L.; Zhang, W. W.; Nagel, S. R.: Drop splashing on a dry smooth surface. Physical review letters94 (2005) 184505 15904376 10.1103/PhysRevLett.94.184505 Search in Google Scholar

4 Silde, A.; Hostikka, S.; Kankkunen, A.: Experimental and numerical studies of liquid dispersal from a soft projectile impacting a wall. Nuclear Engineering and Design241 (2011) 61762410.1016/j.nucengdes.2010.07.033 Search in Google Scholar

5 Hostikka, S.; Silde, A.; Sikanen, T.; Vepsä, A.; Paajanen, A.; Honkanen, M.: Experimental characterization of sprays resulting from impacts of liquid-containing projectiles. Nuclear Engineering and Design295 (2015) 38840210.1016/j.nucengdes.2015.09.008 Search in Google Scholar

6 Josserand, C.; Lemoyne, L.; Troeger, R.; Zaleski, S.: Droplet impact on a dry surface: triggering the splash with a small obstacle. Journal of fluid mechanics524 (2005) 475610.1017/S0022112004002393 Search in Google Scholar

7 Gupta, A.; Kumar, R.: Droplet impingement and breakup on a dry surface. Comput. Fluids39 (2010) 1696170310.1016/j.compfluid.2010.06.006 Search in Google Scholar

8 Bird, J. C.; Tsai, S. S.; Stone, H. A.: Inclined to splash: triggering and inhibiting a splash with tangential velocity. New Journal of Physics,11 (2009) 06301710.1088/1367-2630/11/6/063017 Search in Google Scholar

9 Pan, K. L.; Tseng, K. C.; Wang, C. H.: Breakup of a droplet at high velocity impacting a solid surface. Experiments in fluids48 (2010) 14315610.1007/s00348-009-0697-3 Search in Google Scholar

10 Visser, C. W.; Frommhold, P. E.; Wildeman, S.; Mettin, R.; Lohse, D.; Sun, C.: Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matter11 (2015) 17081722 25607820 10.1039/C4SM02474E Search in Google Scholar

11 Imonsen, B. C.; Wierzbicki, T.: Plasticity, fracture and friction in steady state plate cutting. International Journal of Impact Engineering19 (1997) 66769110.1016/S0734-743X(96)00050-4 Search in Google Scholar

12 Harlow, F. H.; Shannon, J. P.: The splash of a liquid drop. Journal of Applied Physics38 (1967) 3855386610.1063/1.1709031 Search in Google Scholar

13 Engel, O. G.: Waterdrop collisions with solid surfaces. Journal of Research of the National Bureau of Standards54 (1955) 28129810.6028/jres.054.033 Search in Google Scholar

14 Gouse, S. W.; Bruni: A survey of the velocity of sound in two-phase mixtures. Amer. Soc. of Mechanical Engineers, 1964 Search in Google Scholar

15 Liu, J.; Vu, H.; Yoon, S. S.; Jepsen, R.A.; Aguilar, G.: Splashing phenomena during liquid droplet impact. Atomization and Sprays20 (2010) Search in Google Scholar

16 Van der Wal, R. L.; Berger, G. M.; Mozes, S. D.: The splash/non-splash boundary upon a dry surface and thin fluid film. Exp. Fluids40 (2006) 535910.1007/s00348-005-0045-1 Search in Google Scholar

17 Pasandideh-Fard, M.; Pershin, V.; Chandra, S.; Mostaghimi, J.: Splat shapes in a thermal spray coating process: Simulations and experiments. J. Therm. Spray Technol.11 (2002) 20621710.1361/105996302770348862 Search in Google Scholar

18 Dombrowski, N.; Johns, W. R.: The aerodynamic instability and disintegration of viscous liquid sheets. Chemical Engineering Science18 (1963) 20321410.1016/0009-2509(63)80037-8 Search in Google Scholar

19 Ashgriz, N.; Moreira, A. L. N.; Moita, A. S.; Chandra, S.: Handbook of Atomization and Sprays-Theory and Applications. (2011) 18321110.1007/978-1-4419-7264-4 Search in Google Scholar

20 Arcoumanis, C.; Gavaises, M.; French, B.: Effect of fuel injection processes on the structure of diesel sprays. No. 970799. SAE Technical Paper 970799, 1979 Search in Google Scholar

21 Baumgarten, C.: Mixture formation in internal combustion engines. Springer Science & Business Media, 2006 Search in Google Scholar

22 Raoult, F. M.: General law of the vapor pressure of solvents. Comptes Rendus,104 (1887) 14301433 Search in Google Scholar

23 Brennen, C. E.: Fundamentals of multiphase flow. Cambridge university press, 200510.1017/CBO9780511807169 Search in Google Scholar

24 Roberts, A. F.: Thermal Radiation Hazards from Releases of LPG from Pressurized Storage. Fire Safety Journal4 (1981/82) 19721210.1016/0379-7112(81)90018-7 Search in Google Scholar

25 Hasegawa, K.; Sato, K.: Study on the Fireball Following Steam Explosion of n-Pentane. Loss Prevention and Safety Promotion2 (1977) 297 Search in Google Scholar

26 Roberts, A. F.: The effect of conditions prior to loss of containment on fireball behaviour. In 3rd International Symposium on Loss Prevention and Safety Promotion in the Processes Industries. The Institution of Chemical Engineers, Symposium Series71 (1982) 181190 Search in Google Scholar

27 CCPS: Guidelines for Consequence Analysis of Chemical Releases. Wiley-AIChE, New York, 1999 Search in Google Scholar

28 Hardee, H. C.; Lee, D.O.: Expansion of clouds from pressurized liquids. Accident. Anal. Prev.,7 (1975) 9110210.1016/0001-4575(75)90003-2 Search in Google Scholar

29 Hardee, H. C.; Lee, D. O.; Benedick, W. B.: Thermal hazard from LNG fireballs. Combust. Sci. Technol.17 (1978) 18919710.1080/00102207808946829 Search in Google Scholar

30 Pietersen, C.: Analysis of the LPG accident in San Juan Ixhuatepec, Mexico City, November 19, 1984 (RPRT). Technical Report. TNO, The Hague, 1985 Search in Google Scholar

31 Marshall, V. C.: Major chemical hazards. Chichester UK: Ellis Harwood Ltd. (1987) 332336 Search in Google Scholar

32 TNO Yellow Book, Methods for the calculation of the physical effects of the escape of dangerous material, Chapter 6, TNO Rijswijk, The Netherlands, 1989 Search in Google Scholar

33 Abassi, T.; Abassi, S. A.: The boiling liquid expanding vapor explosion (BLEVE): mechanism, consequence assessment, management. Journal of Hazardous Materials141 (2007) 489519 17113225 10.1016/j.jhazmat.2006.09.056 Search in Google Scholar

34 Saarenheimo, A.; Tuomala, M.; Calonius, K.; Hakola, I.; Hostikka, S.; Silde, A.: Experimental and numerical studies on projectile impacts. J Struct Mech42 (2009) 137 Search in Google Scholar

Received: 2017-11-06
Published Online: 2018-03-08
Published in Print: 2018-03-19

© 2018, Carl Hanser Verlag, München