Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 31, 2018

Contribution to the validation of the VVER-1000 Temelin NPP computing model for the ATHLET/DYN3D coupled codes

Beitrag zur Validierung des WWER-1000-Rechenmodells des KKW Temelin für das gekoppelte Programmsystem ATHLET/DYN3D
J. Hádek and R. Meca
From the journal Kerntechnik

Abstract

This paper contains a description and evaluation of the thermal-hydraulic calculation of VVER-1000 transient connected with steam dump to atmosphere (SDA) opening during decreased reactor power to 20% of nominal power (Nnom). The calculation was performed with the thermal-hydraulic system program ATHLET coupled with the 3-D reactor dynamic code DYN3D. A comparison with the experiment was performed on the base of measured values during SDA project function test on the VVER-1000 Temelín NPP Unit 2. Results obtained from calculated vs. experimental values contribute to the validation of the ATHLET/DYN3D coupling.

Kurzfassung

Dieser Beitrag enthält eine Beschreibung und Bewertung der thermohydraulischen Berechnung einer WWER-1000-Transienten verbunden mit dem Start des Dampfablasses in die Atmosphäre (SDA) während der Reduzierung der Reaktorleistung auf 20% der Nennleistung (Nnom). Die Berechnung erfolgte mit der Kopplung des thermohydraulischen Programmsystems ATHLET mit dem 3-D-Reaktor-Dynamikcode DYN3D. Ein Vergleich mit dem Experiment wurde auf der Basis von Messwerten während des Funktionstests des SDA-Projekts beim WWER-1000 KKW Temelín Block 2 durchgeführt. Der Vergleich der berechneten Werte mit den experimentellen Daten trägt zur Validierung von ATHLET/DYN3D bei.


* E-mail:

References

1 Hádek, J.; Meca, R.: Validation of Thermal-hydraulic Computing Model of VVER-1000 Temelín NPP for ATHLET/DYN3D Coupled Codes, Proceedings of the 27th Symposium of AER, Munich, Germany, October 17–20, 2017, 413–432, see also the Proceedings of canceled ICONE19 Conference 10.1299/jsmeicone.2011.19._ICONE1943_234Search in Google Scholar

2 Teschendorf, V.; Austregesilo, H.; Lerchl, G.: Methodology, Status and Plans for Development and Assessment of the Code ATHLET. Organization for Economic Co-operation and Development, Committee on the Safety of Nuclear Installations, Proc. Workshop Transient Thermal-Hydraulic and Neutronic Codes Requirements, Annapolis, Maryland, USA, November 5–8, 1996, 112Search in Google Scholar

3 Austregesilo, H.; Bals, C.; Hora, A.; Lerchl, G.; Romstedt, P.: ATHLET, Mod 2.0 Cycle A. GRS-P-1/Vol.4, Gesellschaft fuer Anlagen-und Reaktorsicherheit (GRS) mbH., 2003Search in Google Scholar

4 Kliem, S.; Danilin, S.; Hämäläinen, A.; Hádek, J.; Keresztúri, A.; Siltanen, P.: Qualification of Coupled 3-D Neutron-Kinetic/Thermal-Hydraulic Code Systems by the Calculation of Main-Steam-Line-Break Benchmarks in a NPP with VVER-440 Reactor. Nuclear Science and Engineering157 (2007) 28029810.13182/NSE07-A2728Search in Google Scholar

5 Rohde, U.; Kliem, S.; Grundmann, U.; Baier, S.; Bilodid, Y.; Duerigen, S.; Fridman, E.; Gommlich, A.; Grahn, A.; Holt, L.; Kozmenkov, Y.; Mittag, S.: The reactor dynamics code DYN3D – models, validation and application. Progress in Nuclear Energy89 (2016) 17018010.1016/j.pnucene.2016.02.013Search in Google Scholar

6 Grundmann, U.; Hollstein, F.: A Two-Dimensional Intranodal Flux Expansion Method for Hexagonal Geometry. Nuclear Science and Engineering133 (1999) 20122210.13182/NSE99-A2082Search in Google Scholar

7 Manera, A.; Rohde, U.; Prasser, H.-M.; van der Hagen, T. H. J.: Modeling of Flashing-Induced Instabilities in the Start-Up Phase of Natural-Circulation BWRs Using the Code FLOCAL. Nuclear Engineering and Design235 (2005) 1517153510.1016/j.nucengdes.2005.01.008Search in Google Scholar

8 Grundmann, U.; Lucas, D.; Rohde, U.: Coupling of the Thermohydraulic Code Athlet with the Neutron Kinetic Core Model DYN3D. In: Proceedings of the International Conference on Mathematics and Computations, Physics and Environmental Analysis, Portland, Oregon, USA, April 30 – May 5, 1995, Vol. 1, pp. 179191Search in Google Scholar

9 Grundmann, U.; Kliem, S.; Rohde, U.: Analysis of the Boiling Water Reactor Turbine Trip Benchmark with the Codes DYN3D and ATHLET/DYN3D. Nuclear Science and Engineering148 (2004) 22623410.13182/NSE04-A2453Search in Google Scholar

10 Kozmenkov, Y.; Kliem, S.; Rohde, U.: Validation and verification of the coupled neutron kinetic/thermalhydraulic system code DYN3D/ATHLET. Annals of Nuclear Energy84 (2015) 15316510.1016/j.anucene.2014.12.012Search in Google Scholar

11 Vanttola, T.; Hämäläinen, A.; Kliem, S.; Kozmenkov, Y.; Weiss, F.-P.; Kerezstúri, A.; Hádek, J.; Strmenský, C.; Stefanova, S.; Kuchin, A.; Hlbocký, P.; Siko, D.; Danilin, S.: Validation of coupled codes using VVER plant measurements. Nuclear Engineering and Design235 (2005) 50751910.1016/j.nucengdes.2004.08.047Search in Google Scholar

12 Mittag, S.; Kliem, S.; Weiss, F.-P.; Kyrki-Rajamäki, R.; Hämäläinen, A.; Langenbuch, S.; Danilin, S.; Hádek, J.; Hegyi, G.; Kuchin, A.; Panayotov, D.: Validation of coupled neutron kinetic/thermal-hydraulic codes Part 1: Analysis of a VVER-1000 transient (Balakovo-4). Annals of Nuclear Energy28 (2001) 85787310.1016/S0306-4549(00)00095-5Search in Google Scholar

13 Hämäläinen, A.; Kyrki-Rajamäki, R.; Mittag, S.; Kliem, S.; Weiss, F.-P.; Langenbuch, S.; Danilin, S.; Hádek, J.; Hegyi, G.: Validation of coupled neutron kinetic/thermal-hydraulic codes Part 2: Analysis of a VVER-440 transient (Loviisa-1). Annals of Nuclear Energy29 (2002) 25526910.1016/S0306-4549(01)00039-1Search in Google Scholar

14 Hádek, J.; Lahovský, F.; Meca, R.: NRI Řež solution of Exercise 3 of VVER-1000 Coolant Transient Benchmark – Phase 1 with coupled codes DYN3D-ATHLET. Progress in Nuclear Energy48 (2006) 82082910.1016/j.pnucene.2006.06.010Search in Google Scholar

15 Kozmenkov, Y.; Kliem, S.; Grundmann, U.; Rohde, U.: Weiss, F.-P.: Calculation of the VVER-1000 coolant transient benchmark using the coupled code systems DYN3D/RELAP5 and DYN3D/ATHLET. Nuclear Engineering and Design237 (2007) 40741410.1016/j.nucengdes.2007.02.021Search in Google Scholar

16 Kliem, S.; Kozmenkov, Y.; Höhne, T.; Rohde, U.: Analyses of the V1000CT-1 Benchmark with the DYN3D/ATHLET and DYN3D/RELAP Coupled Code Systems Including a Coolant Mixing Model Validated Against CFD Calculations. Progress in Nuclear Energy, Vol. 48 (2006), pp. 83084810.1016/j.pnucene.2006.06.008Search in Google Scholar

17 Kotsarev, A.; Lizorkin, M.; Benčík, M.; Hádek, J.; Kozmenkov, Y.; Kliem, S.: Qualification of coupled 3D neutron kinetic/thermal hydraulic code systems by the calculation of a VVER-440 benchmark – re-connection of an isolated loop. Kerntechnik81 (2016) 40741710.3139/124.110702Search in Google Scholar

18 Casal, J. J.; Stammler, R. J. J.; Villarino, E. A.; Feri, A. A.: HELIOS: Geometric Capabilities of a New Fuel Assembly Program. Proceedings of the International Topical Meeting on Advances in Mathematics, Computation, and Reactor Physics, Pittsburgh, PA, USA, April 28 – May 2, 1991, Vol. 2, pp. 102113Search in Google Scholar

19 Tinková, E.; Tinka, I.: The basic Two-group library ETEWH01. ÚJV Řež, a. s. – division ENERGOPROJEKT PRAHA, EGP 5110-T-000105, August 2005 (in Czech)Search in Google Scholar

20 CRISSUE-S: Neutronics/Thermal-hydraulics Coupling in LWR Technology, Vol. 3, Achievements and Recommendations Report, OECD 2004, NEA No. 5434, 2004, p. 41Search in Google Scholar

Received: 2018-01-29
Published Online: 2018-08-31
Published in Print: 2018-08-27

© 2018, Carl Hanser Verlag, München