Skip to content
Accessible Unlicensed Requires Authentication Published by De Gruyter August 31, 2018

Application of discontinuity factors and group constants generated by SERPENT in the KIKO3 DMG code

Anwendung der von SERPENT generierten Diskontinuitätsfaktoren und Gruppenkonstanten im KIKO3 DMG-Code
I. Pataki, B. Batki, A. Keresztúri and I. Panka
From the journal Kerntechnik

Abstract

Discontinuity factors and node-wise group constants were generated by the SERPENT Monte Carlo code and applied in the KIKO3 DMG nodal code. The methodology was tested by calculating a typical VVER-440 calculation benchmark. A reference solution of the benchmark was calculated by using also the SERPENT code and the accuracy of the different approaches was checked against this latter solution.

Kurzfassung

Diskontinuitätsfaktoren und knotenweise Gruppenkonstanten wurden durch den SERPENT Monte-Carlo-Code generiert und im KIKO3 DMG-Knotencode angewendet. Die Methodik wurde durch die Berechnung eines typischen VVER-440-Berechnungsmaßstabs getestet. Eine Referenzlösung des Benchmarks wurde ebenfalls unter Verwendung des SERPENT-Codes berechnet und die Genauigkeit der verschiedenen Ansätze gegen diese Lösung geprüft.


* E-mail:

References

1 Henry, A. F.: Nuclear Reactor Analysis. The MIT Press (1975)Search in Google Scholar

2 Henry, A. F.; et al.: Continued Development of Nodal Methods for Reactor Analysis. Energy Laboratory Report No.MIT-EL-85-003, March 1985Search in Google Scholar

3 Henry, A. F.; Mohamed, A. S. G.: The use of Monte Carlo Techniques to determine few-group nodal discontinuity factors. Department of Nuclear Engineering Massachusetts Institute of Technology Cambridge, Massachusetts, U. S. A.Search in Google Scholar

4 Smith, K. S.: Assembly homogenization techniques for light water reactor analysis. Prog. Nucl. Energy17 (1986) 30333510.1016/0149-1970(86)90035-1Search in Google Scholar

5 Tahara, Y.; Kanagawa, T.; Sekimoto, H.: Two-Dimensional Baffle/Reflector Constants for Nodal Code in PWR Core Design. J. Nucl. Sci Technol.37 (2000) 98610.1080/18811248.2000.9714982Search in Google Scholar

6 Tahara, Y.; Sekimoto, H.: Study on Transport-equivalent Diffusion Constants for a Neutron Reflector. Preprint 2001 Fall. Mtg. AESJ, (in Japanese), I66Search in Google Scholar

7 Tahara, Y., Sekimoto, H.: Reactivity Effect of Iron Reflector in LWR Cores. J. Nucl. Sci Technol.38 (2001) 10210.1080/18811248.2001.9715012Search in Google Scholar

8 Petkov, P.; et al.: VVER-1000 radial reflector modeling by diffusion nodes. Prog. Nucl. Energy48 (2006) 76477210.1016/j.pnucene.2006.08.001Search in Google Scholar

9 Sanchez, R.: Assembly homogenization techniques for core calculations. Prog. Nucl. Energy, 51 (2009) 143110.1016/j.pnucene.2008.01.009Search in Google Scholar

10 Xuhua, Z.; Fu, L.; Dengying, W.; Jianqiu, Y.; Jinfeng, W.; Jiong, G.; Xingqing, J.: Equivalence of control rod model in high temperature gas-cooled reactor. In: Proceedings of the International Conference on Reactor Physics, Nuclear Power: A Sustainable Resource (PHYSOR2008), Interlaken, Switzerland PMid:24265477;Search in Google Scholar

11 Lee, et al.: IAEAGT-MHR benchmark calculations by using the HELIOS/MASTER physics analysis procedure and the MCNP Monte Carlo code. Nucl. Eng. Design238 (2008) 2654266710.1016/j.nucengdes.2008.04.016Search in Google Scholar

12 Pós, I., Parkó, T., Patai, Sz. S.: Application of Discontinuity factors in C-PORCA 7 code. Proceedings of the AER Symposium 2008Search in Google Scholar

13 Xuhua, Z.; Fu, L.; Dengying, W.: Application of the discontinuity factor theory to accelerate routine rod worth calculations for modular HTRs, Application of the discontinuity factor theory to accelerate routine rod worth calculations for modular HTRs. Nuclear Engineering and Design239 (2009) 28128810.1016/j.nucengdes.2008.10.018Search in Google Scholar

14 Keresztúri, A.; Hegyi, Gy.; Marázcy, Cs.; Panka, I.; Telbisz, M.; Trosztel, I.; Hegedűs, C.: Development and validation of the three-dimensional dynamic code-KIKO3D. Annals of nuclear energy30 (2003) 9312010.1016/S0306-4549(02)00043-9Search in Google Scholar

15 Pataki, I.; Keresztúri, A.: Development and verification of the new nodal methods in the KIKO3 DMG code. Kerntechnik79 (2014) 31432210.3139/124.110451Search in Google Scholar

16 Keresztúri, A.; Hegyi, Gy.; Korpás, L.; Maráczy, Cs.; Makai, M.; Telbisz, M.: General features and validation of the recent KARATE-440 code system. International Journal of Nuclear Energy5 (2010) 20723810.1504/IJNEST.2010.033476Search in Google Scholar

17 Leppänen, J.; Pusa, M.; Fridman, E.: Overview of methodology for spatial homogenization in the SERPENT 2 Monte Carlo code. Annals of Nuclear Energy96 (2016) 12613610.1016/j.anucene.2016.06.007Search in Google Scholar

18 Krýsl, V.; Mikoláš, P.; Sprinzl, D.; Švarný, J.: “Full Core” VVER-440 Pin Power Distribution Calculation Benchmark. Proceedings of the twenty-first Symposium of AER, Dresden, Germany, 2011Search in Google Scholar

19 Krýsl, V.; Mikoláš, P.; Sprinzl, D.; Švarný, J.; Temesvári, E.; Pós, I.; Heraltová, L.: “FULL-CORE” VVER-440 calculation benchmark. Kerntechnik79 (2014) 27928810.3139/124.110453Search in Google Scholar

20 Leppänen, J.: SERPENT a Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code. (2015) [Online]. Available: Search in Google Scholar

Received: 2018-01-31
Published Online: 2018-08-31
Published in Print: 2018-08-27

© 2018, Carl Hanser Verlag, München