Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 27, 2019

Adaptation of the gas gap simplified model in DYN3D code to new types of fuel

Anpassung des vereinfachten Gasspaltmodells im DYN3D-Code an neue Brennelementtypen
M. Ieremenko and Iu. Ovdiienko
From the journal Kerntechnik

Abstract

Currently, new types of fuel are being considered to be introduced or already in the introduction process at Ukrainian NPPs with WWER. By means of a new version of the TRANSURANUS code, new functions of the gas gap thickness in dependence on the burnup have been created and implemented into the gas gap model of the reactor dynamics code DYN3D. These new functions cover all actual and perspective fuel types for the Ukrainian NPPs with WWER.

Kurzfassung

Derzeit wird der Einsatz neuer Brennelemente in ukrainischen Kernkraftwerken des Typs WWER erwogen. Mit Hilfe einer neuen Version des TRANSURANUS-Codes wurden neue Funktionen der Gasspaltweite in Abhängigkeit vom Abbrand entwickelt und in das Gasspaltmodell des Reaktordynamikcodes DYN3D implementiert. Damit können nun alle aktuellen und für die Zukunft der ukrainischen KKW bislang angedachten Brennelemente berechnet werden.


E-mail:

References

1 Rohde, U.: The modelling of fuel rod behaviour under RIA conditions in the code DYN3D. Annals of Nucl. Energy28 (2001) 1343136310.1016/S0306-4549(00)00128-6Search in Google Scholar

2 Kliem, S.; et al.: The reactor dynamics code DYN3D. Kerntechnik81 (2016) 17017210.3139/124.110692Search in Google Scholar

3 Rohde, U. et al.: The reactor dynamics code DYN3D – Models, validation and applications. Progress in Nuclear Energy89 (2016) 1709010.1016/j.pnucene.2016.02.013Search in Google Scholar

4 Lassmann, K.: TRANSURANUS: a fuel rod analysis code ready for use. Journal of Nuclear Materials188 (1992) 29530210.1016/0022-3115(92)90487-6Search in Google Scholar

5 Gagarinskiy, A. A.; Osipova, E. S.; Kalinin, Yu. P.: Advantages of VVER-440 fuel cycles with new fuel assemblies. Kerntechnik83 (2018) 30731310.3139/124.110904Search in Google Scholar

6 Teräsvirta, R.: Operational experience of nuclear fuel in Finnish nuclear power plants (with emphasis on VVER fuel). Proceedings of the 8th International Conference on WWER Fuel Performance, Modelling and Experimental Support. Helena Resort near Burgas, Bulgaria 26 September–4 October 2009, p. 5662Search in Google Scholar

7 ESSANUF project. http://www.essanuf.eu/Search in Google Scholar

8 WestinghouseNuclear: Nuclear Fuel. Integral Fuel Burnable Absorber (IFBA) Fuel Cycles and IFBA/Gad Hybrid Fuel Cycles. http://www.westinghousenuclear.com/Portals/0/operating%20plant%20services/fuel/fuel%20products/NFCM-0117CEAflysheet.pdfSearch in Google Scholar

9 WestinghouseNuclear: VVER-1000 Fuel Products. http://www.westinghousenuclear.com/Portals/0/operating%20plant%20services/fuel/fuel%20products/VVER1000_blad%20och%20tabellsida.pdfSearch in Google Scholar

10 Samoilov, O.; Kaydalov, V.; Romanov, A.; Falkov, A.; Morozkin, O.; Sholin, E.: Development of TVSA WWER-1000 Fuel. Proceedings of the 10th Int. Conf. WWER Fuel Performance, Modelling and Experimental Support, 7–14 September 2013, Sandanski, Bulgaria, pp. 195198Search in Google Scholar

11 Molchanov, V.: Nuclear fuel for NPPs: Current status and main trends of development. Proceedings of the 10th Int. Conf. WWER Fuel Performance, Modelling and Experimental Support, 7–14 September 2013, Sandanski, Bulgaria, pp. 3445Search in Google Scholar

12 Kaichao, Sun: MCNP modeling of hexagon VVER fuel. Master of Science Thesis. Reactor Physics Department. Royal Institute of Technology. Stockholm, Sweden, 2008Search in Google Scholar

13 Walker, E. D.: Modeling integral fuel burnable absorbers using the method of characteristics. Masters Theses Graduate School. University of Tennessee, Knoxville. 12–2014. http://trace.tennessee.edu/cgi/viewcontent.cgi?article=4249&context=utk_gradthesSearch in Google Scholar

14 Ieremenko, M.; Ovdiienko, Yu.: Effect of burnup dependence of fuel-cladding gap properties on WWER core characteristics. Proceedings of the 20th SYMPOSIUM of AER on VVER Reactor Physics and Reactor Safety 20–24 September 2010, Espoo, Finland, p. 539550Search in Google Scholar

15 Ovdiienko, I.; Dybach, O.; Gumenyuk, D.; Ieremenko, M.: Ukrainian Experience in Diversification of Nuclear Fuel Supplies in Line with the European Energy Security Strategy. Proceedings of the EUROSAFE Forum 2017 Paris, 6 and 7 November 2017. ISBN 978-2-9545237-8-1. p. 3744Search in Google Scholar

16 Lötsch, T.; Khalimonchuk, V.; Kuchin, A.: Proposal of a benchmark for core burnup calculations for a WWER-1000 reactor core. Proceedings of the 19th AER Symposium on WWER Reactor Physics and Reactor Safety, St. Constantine and Elena resort, Bulgaria, Sept. 21–25, 2009, p. 53108Search in Google Scholar

17 Lötsch, T.; Khalimonchuk, V.; Kuchin, A.: Corrections and additions to the proposal of a benchmark for core burnup calculations for a WWER- 1000 reactor. Proceedings of the 20th AER Symposium on WWER Reactor Physics and Reactor Safety, Hanasaari, Espoo, Finland, Sept. 20–24, 2010, p. 249336Search in Google Scholar

Received: 2019-02-15
Published Online: 2019-08-27
Published in Print: 2019-09-16

© 2019, Carl Hanser Verlag, München