Abstract
Currently, new types of fuel are being considered to be introduced or already in the introduction process at Ukrainian NPPs with WWER. By means of a new version of the TRANSURANUS code, new functions of the gas gap thickness in dependence on the burnup have been created and implemented into the gas gap model of the reactor dynamics code DYN3D. These new functions cover all actual and perspective fuel types for the Ukrainian NPPs with WWER.
Kurzfassung
Derzeit wird der Einsatz neuer Brennelemente in ukrainischen Kernkraftwerken des Typs WWER erwogen. Mit Hilfe einer neuen Version des TRANSURANUS-Codes wurden neue Funktionen der Gasspaltweite in Abhängigkeit vom Abbrand entwickelt und in das Gasspaltmodell des Reaktordynamikcodes DYN3D implementiert. Damit können nun alle aktuellen und für die Zukunft der ukrainischen KKW bislang angedachten Brennelemente berechnet werden.
References
1 Rohde, U.: The modelling of fuel rod behaviour under RIA conditions in the code DYN3D. Annals of Nucl. Energy28 (2001) 1343–136310.1016/S0306-4549(00)00128-6Search in Google Scholar
2 Kliem, S.; et al.: The reactor dynamics code DYN3D. Kerntechnik81 (2016) 170–17210.3139/124.110692Search in Google Scholar
3 Rohde, U. et al.: The reactor dynamics code DYN3D – Models, validation and applications. Progress in Nuclear Energy89 (2016) 170–9010.1016/j.pnucene.2016.02.013Search in Google Scholar
4 Lassmann, K.: TRANSURANUS: a fuel rod analysis code ready for use. Journal of Nuclear Materials188 (1992) 295–30210.1016/0022-3115(92)90487-6Search in Google Scholar
5 Gagarinskiy, A. A.; Osipova, E. S.; Kalinin, Yu. P.: Advantages of VVER-440 fuel cycles with new fuel assemblies. Kerntechnik83 (2018) 307–31310.3139/124.110904Search in Google Scholar
6 Teräsvirta, R.: Operational experience of nuclear fuel in Finnish nuclear power plants (with emphasis on VVER fuel). Proceedings of the 8th International Conference on WWER Fuel Performance, Modelling and Experimental Support. Helena Resort near Burgas, Bulgaria 26 September–4 October 2009, p. 56–62Search in Google Scholar
7 ESSANUF project. http://www.essanuf.eu/Search in Google Scholar
8 WestinghouseNuclear: Nuclear Fuel. Integral Fuel Burnable Absorber (IFBA) Fuel Cycles and IFBA/Gad Hybrid Fuel Cycles. http://www.westinghousenuclear.com/Portals/0/operating%20plant%20services/fuel/fuel%20products/NFCM-0117CEAflysheet.pdfSearch in Google Scholar
9 WestinghouseNuclear: VVER-1000 Fuel Products. http://www.westinghousenuclear.com/Portals/0/operating%20plant%20services/fuel/fuel%20products/VVER1000_blad%20och%20tabellsida.pdfSearch in Google Scholar
10 Samoilov, O.; Kaydalov, V.; Romanov, A.; Falkov, A.; Morozkin, O.; Sholin, E.: Development of TVSA WWER-1000 Fuel. Proceedings of the 10th Int. Conf. WWER Fuel Performance, Modelling and Experimental Support, 7–14 September 2013, Sandanski, Bulgaria, pp. 195–198Search in Google Scholar
11 Molchanov, V.: Nuclear fuel for NPPs: Current status and main trends of development. Proceedings of the 10th Int. Conf. WWER Fuel Performance, Modelling and Experimental Support, 7–14 September 2013, Sandanski, Bulgaria, pp. 34–45Search in Google Scholar
12 Kaichao, Sun: MCNP modeling of hexagon VVER fuel. Master of Science Thesis. Reactor Physics Department. Royal Institute of Technology. Stockholm, Sweden, 2008Search in Google Scholar
13 Walker, E. D.: Modeling integral fuel burnable absorbers using the method of characteristics. Masters Theses Graduate School. University of Tennessee, Knoxville. 12–2014. http://trace.tennessee.edu/cgi/viewcontent.cgi?article=4249&context=utk_gradthesSearch in Google Scholar
14 Ieremenko, M.; Ovdiienko, Yu.: Effect of burnup dependence of fuel-cladding gap properties on WWER core characteristics. Proceedings of the 20th SYMPOSIUM of AER on VVER Reactor Physics and Reactor Safety 20–24 September 2010, Espoo, Finland, p. 539–550Search in Google Scholar
15 Ovdiienko, I.; Dybach, O.; Gumenyuk, D.; Ieremenko, M.: Ukrainian Experience in Diversification of Nuclear Fuel Supplies in Line with the European Energy Security Strategy. Proceedings of the EUROSAFE Forum 2017 Paris, 6 and 7 November 2017. ISBN 978-2-9545237-8-1. p. 37–44Search in Google Scholar
16 Lötsch, T.; Khalimonchuk, V.; Kuchin, A.: Proposal of a benchmark for core burnup calculations for a WWER-1000 reactor core. Proceedings of the 19th AER Symposium on WWER Reactor Physics and Reactor Safety, St. Constantine and Elena resort, Bulgaria, Sept. 21–25, 2009, p. 53–108Search in Google Scholar
17 Lötsch, T.; Khalimonchuk, V.; Kuchin, A.: Corrections and additions to the proposal of a benchmark for core burnup calculations for a WWER- 1000 reactor. Proceedings of the 20th AER Symposium on WWER Reactor Physics and Reactor Safety, Hanasaari, Espoo, Finland, Sept. 20–24, 2010, p. 249–336Search in Google Scholar
© 2019, Carl Hanser Verlag, München