Accessible Requires Authentication Published by De Gruyter October 4, 2019

Validation and Application of the AC2 Code COCOSYS

Validierung und Anwendung des AC2-Programms COCOSYS
N. Reinke, S. Arndt, I. Bakalov, S. Band, S. Beck, H. Nowack, D. Iliev, C. Spengler, W. Klein-Hessling and M. Sonnenkalb
From the journal Kerntechnik

Abstract

The GRS program package AC2 with its codes ATHLET/ATHLET-CD and COCOSYS aims for the reliable computational simulation of significant phenomena occurring during normal operation, design basis accidents, and severe accidents in the cooling circuit and containment of a nuclear power plant. To keep the modelling at the state-of-the-art, continuous development and validation is required. This is accomplished through participation in several national and international experimental research programs, where AC2 or one of its codes are assessed against both separate effect tests and integral tests. This paper exemplifies the status of validation and application of COCOSYS by means of calculations of iodine chemistry and molten corium/concrete interaction after reactor pressure vessel rupture. Further, calculations using the external 3D module CoPool coupled to COCOSYS on thermal stratification in large water pools are discussed. The examples given demonstrate the progress of the COCOSYS development and the capability to simulate phenomena in the containment during incidents and accidents with good results. Future applications comprise the entire spectrum of incidents and accidents for Generation III/III+ systems with just one program package.

Kurzfassung

Das Programmpacket AC2 der GRS mit den Einzelprogrammen ATHLET/ATHLET-CD und COCOSYS strebt die zuverlässige Computersimulation wesentlicher Phänomene, die während Normalbetrieb, Auslegungsstörfällen und Ereignissen mit Kernzerstörung (Unfälle) in Kühlkreislauf und Containment eines Kernkraftwerks auftreten können, an. Um die Modellqualität auf dem Stand von Wissenschaft und Technik zu halten, ist eine kontinuierliche qualitätsgesicherte Weiterentwicklung und Validierung notwendig. Dies wird durch eine Beteiligung an einer Vielzahl von nationalen und internationalen Experimentalprogrammen sichergestellt. Dabei werden AC2 oder eines seiner Programme anhand eines Vergleichs der Rechnungsergebnisse mit den entsprechenden experimentellen Daten sowohl von Einzeleffekt- als auch von Integralexperimenten bewertet. Im vorliegenden Beitrag wird der Stand der Validierung von COCOSYS beispielhaft für die Modellierung der Iodchemie und der Schmelze-Beton-Wechselwirkung dargestellt. Darüber hinaus werden Ergebnisse der Anwendung des an COCOSYS gekoppelten externen 3D Moduls CoPool für die thermische Schichtung in großen Wasservorlagen im Containment dargestellt. Die aufgeführten Beispiele zeigen den Entwicklungsfortschritt sowie die Fähigkeit von COCOSYS auf, Phänomene während Stör- und Unfällen mit guter Genauigkeit abzubilden. Zukünftige Anwendungen zielen darauf ab mit nur einem Programmpaket das gesamte Unfallspektrum für Anlagen der Generation III/III+ abzudecken.


E-mail:

References

1 Reinke, N.; et al.: Development, Validation, and Application of the Containment Code System COCOSYS. The 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-11), Gyeongju (Korea), 9–13 October, 2016 Search in Google Scholar

2 Weyermann, F.: Development of AC2 for the Simulation of advanced reactor designs of generation 3/3+ and light water cooled SMRs. Kerntechnik84 (2019) 357 Search in Google Scholar

3 Iliev, O.; Iliev, D.; Steiner, K.; Zemitis, A.; Klein-Hessling, W.; Sonnenkalb, M.; Freitag, M.: Towards a combined CFD/LP code approach for containment simulations, Application of CFD/CMFD Codes to Nuclear Reactor Safety and Design and their Experimental Validation. Workshop Proceedings OECD/NEA-IAEA Workshop CFD4NRS-5, Zurich, 9–11 September, Zurich, 2014 Search in Google Scholar

4 Glowa, G.; Moore, Ch.; Ball, J.: The main outcomes of the OECD Behavior of Iodine (BIP) Project. Annals of Nuclear Energy61 (2013) 17918910.1016/j.anucene.2013.02.036 Search in Google Scholar

5 Schaffrath, A.; Krüssenberg, A.-K.; Buchholz, S.; Wielenberg, A.: Necessary Improvements of the GRS Simulation Chain for the Simulation of light water cooled SMRs. Kerntechnik83 (2018) 16917710.3139/124.110913 Search in Google Scholar

6 Gupta, S.; Poss, G.; Sonnenkalb, M.: OECD/NEA THAI program for containment safety research: main insights and perspectives. Proceedings of EUROSAFE Forum 2016. Munich, 7–8 November, 2016, 91108 Search in Google Scholar

7 https://www.oecd-nea.org/jointproj/mcci.html, published by the Nuclear Energy Agency (NEA) of the OECD, accessed in February 2018 Search in Google Scholar

8 Foit, J. J.: Concrete Decomposition Temperature relevant to MCCI Process on LCS Concrete. The 8th European Review Meeting on Severe Accident Research-ERMSAR-2017, Warsaw, Poland, 16–18 May 2017 Search in Google Scholar

9 Gornak, T.; Iliev, O.: A fast algorithm for 3D simulation of thermal stratification in containment pools of nuclear power plants. Computers and Mathematics with Applications, 67 (2014) 2228223910.1016/j.camwa.2014.03.011 Search in Google Scholar

10 Cranga, M.; Fabianelli, R.; Jacq, F.; Barrachin, M.; Duval, F.: The MEDICIS Code, a Versatile Tool for MCCI Modelling. Proceedings of ICAPP05, 15–19 May, Seoul, 2005 Search in Google Scholar

11 Kloos, M.: The Tool SUSA 4 for Probabilistic Uncertainty and Sensitivity Analyses, International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP). Crete Island, Greece, 25–27 May 2015 10.7712/120215.4320.770 Search in Google Scholar

12 Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.: OECD MCCI Project, 2-D Core Concrete Interaction (CCI) Test. Final Report, OECD/MCCI-2005-TR05, 2006 10.2172/1177582 Search in Google Scholar

13 Cranga, M.; Spengler, C.; Atkhen, K.; Fargette, A.; Fischer, M.; Foit, J.; Spindler, B.: Towards a European consensus on possible causes of MCCI ablation anisotropy in oxidic pool. Annals of Nuclear Energy74 (2014) 728810.1016/j.anucene.2014.07.017 Search in Google Scholar

14 OECD/NEA (2017) State-of-the-Art Report on Molten Corium Concrete Interaction and Ex-Vessel Molten Core Coolability. NEA/CSNI/R(2016)15, OECD/NEA, Paris, 2017 Search in Google Scholar

15 Wilks, S. S.: Statistical prediction with special reference to problem of tolerance limits. Annals of Mathematical Statistics 13 (1942) 400–409, Princeton 10.1214/aoms/1177731537 Search in Google Scholar

16 Gupta, S.; Funke, F.: Fission product re-entrainment tests-OA proposal. 2nd OECD/NEA THAI-3 PRG and MB Meeting, Eschborn, November, 2016 Search in Google Scholar

Received: 2019-06-03
Published Online: 2019-10-04
Published in Print: 2019-10-14

© 2019, Carl Hanser Verlag, München