Accessible Unlicensed Requires Authentication Published by De Gruyter October 4, 2019

ATHLET extensions for the simulation of supercritical carbon dioxide driven power cycles

ATHLET Erweiterungen für die Simulation von Kreisläufen mit superkritischem Kohlenstoffdioxid als Arbeitsmedium
M. Hofer, M. Buck and J. Starflinger
From the journal Kerntechnik


The Fukushima accident reveals the need for additional safety systems for nuclear power plants. One promising option is the supercritical carbon-dioxide (sCO2) heat removal system, which consists of a simple Brayton cycle. This study provides an overview of the extensions and validation of the thermal-hydraulic system code ATHLET for the simulation of sCO2 power cycles, especially with regard to the sCO2 heat removal system. The properties of CO2, heat transfer and pressure drop correlations, as well as compact heat exchanger and turbomachinery modelling are considered.


Der Unfall von Fukushima offenbart den Bedarf an zusätzlichen Kühlsystemen für Kernkraftwerke. Eine vielversprechende Option ist ein Nachwärmeabfuhrsystem bestehend aus einem einfachen Joule-Kreisprozess mit superkritischem Kohlenstoffdioxid (sCO2) als Arbeitsmedium. Diese Studie gibt einen Überblick über die Erweiterungen und die Validierung des thermohydraulischen Systemcodes ATHLET für die Simulation von sCO2-Kreisprozessen, besonders im Hinblick auf das sCO2-Nachwärmeabfuhrsystem. Die Stoffdaten von CO2, Wärmeübergangs- und Druckverlustkorrelationen, sowie die Modellierung von Kompaktwärmeübertragern und Turbomaschinen werden berücksichtigt.


1 Venker, J.: Development and Validation of Models for Simulation of Supercritical Carbon Dioxide Brayton Cycles and Application to Self-Propelling Heat Removal Systems in Boiling Water Reactors. Stuttgart, 201510.18419/opus-2364 Search in Google Scholar

2 sCO2-HeRo, from, accessed 19-2-2019 Search in Google Scholar

3 Benra, F. K.; Brillert, D.; Frybort, O.; Hajer, P.; Rohde, M.; Schuster, S.; Seewald, M.; Starflinger, J.: A supercritical CO2 low temperature Brayton-cycle for residual heat removal. The 5th International sCO2 Power Cycles Symposium (2016) 1510.1007/s13398-014-0173-7.2 Search in Google Scholar

4 Bestion, D.: System code models and capabilities. THICKET, Grenoble, 81–106, 2008 Search in Google Scholar

5 Mauger, G.; Tauveron, N.; Bentivoglio, F.; Ruby, A.: On the dynamic modeling of Brayton cycle power conversion systems with the CATHARE-3 code. Energy168 (2019) 1002101610.1016/ Search in Google Scholar

6 Batet, L.; Alvarez-Fernandez, J. M.; Mas de les Valls, E.; Martinez-Quiroga, V.; Perez, M.; Reventos, F.; Sedano, L. A.: Modelling of a supercritical CO2 power cycle for nuclear fusion reactors using RELAP5–3D. Fusion Engineering and Design89 (2014) 35435910.1016/J.FUSENGDES.2014.03.018 Search in Google Scholar

7 Hexemer, M. J.; Hoang, H. T.; Rahner, K. D.; Siebert, B. W.; Wahl, G. D.: Integrated Systems Test (IST) Brayton Loop Transient Model Description and Initial Results. S-CO2 Power Cycle Symposium, Troy, 1–172, 2009 Search in Google Scholar

8 Lerchl, G.; Austregesilo, H.; Schöffel, P.; von der Cron, D.; Weyermann, F.: ATHLET User's Manual. (Vol. 1) Garching, 201610.1007/s00227-005-0161-8 Search in Google Scholar

9 Austregesilo, H.; Bals, C.; Hora, A.; Lerchl, G.; Romstedt, P.; Schöffel, P.; von der Cron, D.; Weyermann, F.: ATHLET Models and Methods. (Vol. 4) Garching, 2016 Search in Google Scholar

10 Gesellschaft für Anlagen- und Reaktorsicherheit gGmbH: ATHLET, 2019, from, accessed 19-8-2019 Search in Google Scholar

11 Müller, C.: Entwicklung schneller Stoffwertpakete zur Beschleunigung des ATHLET-Codes. Garching, 1991 Search in Google Scholar

12 Span, R.; Wagner, W.: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data25 (1996) 1509159610.1063/1.555991 Search in Google Scholar

13 Dierckx, P.: Curve and Surface Fitting with Splines, Clarendon, Oxford [u.a.], 1993 Search in Google Scholar

14 Kunick, M.: Fast Calculation of Thermophysical Properties in Extensive Process Simulations with the Spline-Based Table Look-Up Method (SBTL). Görlitz, 2017 Search in Google Scholar

15 Lemmon, E. W.; Bell, I. H.; Huber, M. L.; McLinden, M. O.: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, National Institute of Standards and Technology, Gaithersburg, 2018, 10.18434/T4JS3C Search in Google Scholar

16 Vesovic, V.; Wakeham, W. A.; Olchowy, G. A.; Sengers, J. V.; Watson, J. T. R.; Millat, J.: The Transport Properties of Carbon Dioxide. Journal of Physical and Chemical Reference Data19 (1990) 76380810.1063/1.555875 Search in Google Scholar

17 Fenghour, A.; Wakeham, W. A.; Vesovic, V.: The Viscosity of Carbon Dioxide. Journal of Physical and Chemical Reference Data27 (1998) 314410.1063/1.556013 Search in Google Scholar

18 Scalabrin, G.; Marchi, P.; Finezzo, F.; Span, R.: A Reference Multiparameter Thermal Conductivity Equation for Carbon Dioxide with an Optimized Functional Form. Journal of Physical and Chemical Reference Data35 (2006) 1549157510.1063/1.2213631 Search in Google Scholar

19 Hewitt, G. F.: Heat Exchanger Design Handbook, Begell House, New York, 1998 Search in Google Scholar

20 Dostal, V.; Driscoll, M. J.; Hejzlar, P.: A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors. Technical Report MIT-ANP-TR-100 (2004) 1317 Search in Google Scholar

21 Walisch, T.: Messung des Wärmeüberganges von überkritischem CO2 im Kreisrohr bei erzwungener sowie bei Mischkonvektion (1997) 10.3929/ETHZ-A-001843633 Search in Google Scholar

22 Son, C.-H.; Park, S.-J.: An experimental study on heat transfer and pressure drop characteristics of carbon dioxide during gas cooling process in a horizontal tube. International Journal of Refrigeration29 (2006) 53954610.1016/j.ijrefrig.2005.10.010 Search in Google Scholar

23 Straetz, M. R.; Mertz, R.; Starflinger, J.: Experimental investigation on the heat transfer between condensing steam and sCO2 in a compact heat exchanger. 2nd European sCO2 Conference 2018 (2018) 10.17185/DUEPUBLICO/46078 Search in Google Scholar

24 Numrich, R.; Müller, J.: J1 Filmkondensation reiner Dämpfe. VDI-Wärmeatlas, Springer Berlin Heidelberg, Berlin, Heidelberg, 1011–1028, 201310.1007/978-3-642-19981-3_63 Search in Google Scholar

25 von Böckh, P.; Wetzel, T.: Wärmeübertragung: Grundlagen Und Praxis (7th ed.), Springer, Berlin, 201710.1007/978-3-662-55480-7 Search in Google Scholar

26 Hofer, M.; Buck, M.; Strätz, M.; Starflinger, J.: Investigation of a correlation based model for sCO2 compact heat exchangers. 3rd European sCO2 Conference, Paris, 1–9, 2019 10.17185/duepublico/48874 Search in Google Scholar

27 Grote, W.: Ein Beitrag zur modellbasierten Regelung von Entnahmedampfturbinen. Bochum, 2009 Search in Google Scholar

28 Dyreby, J. J.; Klein, S. A.; Nellis, G. F.; Reindl, D. T.: Development of advanced off-design models for supercritical carbon dioxide power cycles, American Nuclear Society- ANS; La Grange Park (United States), 1 July 2012 10.1115/GT2013-95824 Search in Google Scholar

29 Hofer, M.; Starflinger, J.: Preliminary analysis of the design and operation conditions of a sCO2 heat removal system. Annual Meeting on Nuclear Technology, Berlin, 1–8, 2019 Search in Google Scholar

30 EUR: European Utility Requirements: Volume 2, 2001 Search in Google Scholar

31 Bohl, W.; Elmendorf, W.: Strömungsmaschinen. 1, Aufbau und Wirkungsweise, Vogel, 2013 Search in Google Scholar

32 Pham, H. S.; Alpy, N.; Ferrasse, J. H.; Boutin, O.; Tothill, M.; Quenaut, J.; Gastaldi, O.; Cadiou, T.; Saez, M.: An approach for establishing the performance maps of the sc-CO2 compressor: Development and qualification by means of CFD simulations. International Journal of Heat and Fluid Flow61 (2016) 37939410.1016/j.ijheatfluidflow.2016.05.017 Search in Google Scholar

33 Hacks, A. J.; Vojacek, A.; Dohmen, H. J.; Brillert, D.: Experimental investigation of the sCO2-HeRo compressor. 2nd European sCO2 Conference 2018 (2018) 01010.17185/duepublico/46088 Search in Google Scholar

Received: 2019-08-07
Published Online: 2019-10-04
Published in Print: 2019-10-14

© 2019, Carl Hanser Verlag, München