Abstract
Countercurrent gaseous flows may occur under certain conditions e.g. in narrow flow paths between compartments within containments of nuclear power plants (NPP) during design basis and beyond design basis accidents. Their potential effect on thermal-hydraulics within the containment is not sufficiently investigated yet. This publication focuses on modelling and numerical investigation of the physical phenomenon of pressure loss due to turbulence in such countercurrent gas-gas flows. Scenarios observed in the test facilities PANDA and THAI+ are being investigated. The important regimes of the countercurrent layered gaseous flows are identified and a mathematical model incorporating all the required regimes is introduced, implemented in the GRS program COCOSYS, tested and discussed in detail. The effects of the new model are numerically investigated. By means of a comparison with a CFD simulation, the model parameters are evaluated. It is suggested to improve the accuracy of the model with the help of future experiments.
Kurzfassung
Bei Auslegungsstörfällen und Unfällen in Kernkraftwerken können im Sicherheitseinschluss unter bestimmten Bedingungen gasförmige Gegenströmungen, zum Beispiel in Strömungsverbindungen zwischen Räumen, auftreten. Deren möglicher Einfluss auf die Thermohydraulik im Sicherheitseinschluss ist noch nicht ausreichend untersucht. In dieser Arbeit sind die wichtigsten Formen einer gasförmigen Gegenströmung beschrieben. Anschließend wird ein neuer Modellansatz, der die physikalischen Einflüsse bei den einzelnen Regimes beschreibt, vorgestellt und detailliert diskutiert. Das zuvor beschriebene Modell wurde in das GRS Programm COCOSYS, das ein substantieller Bestandteil des Programmpakets AC2 ist, implementiert. Mithilfe dieses Ansatzes werden numerische Untersuchungen des Druckverlustes aufgrund von Turbulenzen bei gasförmigen Gegenströmungen in Strömungsverbindungen durchgeführt. In der Anwendung auf realistische Szenarien in den Versuchsanlagen PANDA und THAI+ wird die Bedeutung dieses Phänomens studiert. Die resultierenden Effekte des neuen Modells werden dabei numerisch untersucht und offene Modellparameter anhand eines Vergleichs mit einer CFD-Simulation ausgewertet. Weitere Vorschläge zur Verbesserung der Genauigkeit des Modells mit Hilfe zukünftiger physikalischer Messungen werden vorgestellt.
References
1 Weyermann, F.; Spengler, C.; Schöffel, P.; Buchholz, S.; Steinhoff, T.; Sonnenkalb, M.; Wielenberg, A.; Schaffrath, A.: Development of AC2 for the simulation of advanced reactor designs of generation 3/3+ and light water cooled SMRs. Kerntechnik84 (2019) 35710.3139/124.190068Search in Google Scholar
2 Lerchl, G.; Austregesilo, H.; Langenfeld, A.; Schöffel, P.; Cron, D.; Weyermann, F.: ATHLET 3.2 User's Manual. GRS, 2019Search in Google Scholar
3 Austregesilo, H.; Bals, C.; Hollands, T.; Köllein, C.; Lovasz, L.; Luther, W.; Pandazis, P.; Schubert, J.-D.; Tiborcz, L.; Weber, S.: ATHLET-CD 3.2 User's Manual. GRS, 2019Search in Google Scholar
4 Arndt, S.; Band, S.; Beck, S.; Eschricht, D.; Iliev, D.; Klein-Heßling, W.; Nowack, H.; Reinke, N.; Sonnenkalb, M.; Spengler, C.; Weber, G.: COCOSYS 3.0 User's Manual. GRS-P-3/Vol. 1, 2019Search in Google Scholar
5 Lagrée, P.-Y.: Boundary layer separation and asymptotics from 1904 to 1969. Comptes Rendus Mécanique345 (2017) 613–61910.1016/j.crme.2017.06.002Search in Google Scholar
6 Bohl, W.; Elmendorf, W.: Technische Strömungslehre. Vogel Buchverlag, 2008Search in Google Scholar
7 Nakayama, Y.; Boucher, R. F.: Introduction to Fluid Mechanics. Butterworth-Heinemann, 2000Search in Google Scholar
8 Papanastasiou, T. C.; Georgiou, G. C.; Alexandrou, A. N.: Viscous Fluid Flow. CRC Press LLC, 200010.1201/9781420050288Search in Google Scholar
9 Stephan, M.; Mayinger, F.: Experimental and Analytical Study of Countercurrent Flow Limitation in Vertical Gas/Liquid Flows. Chem. Eng. Technol.15 (1992) 51–6210.1002/ceat.270150110Search in Google Scholar
10 Kang, S.-K.; Chu, I.-C.; No, H.-C.; Chun, M.-H.; Sung, C.-K.: Air-Water Countercurrent Flow Limitation in Horizontal Pipe Connected to an Inclined Riser. Journal of the Korean Nuclear Society31 (1999) 548–560Search in Google Scholar
11 Navarro, M. A.: Study of countercurrent flow limitation in a horizontal pipe connected to an inclined one. Nuclear Engineering and Design235 (2005) 1139–114810.1016/j.nucengdes.2005.02.010Search in Google Scholar
12 Vierow, K.: Countercurrent flow limitation experiments and modeling for improved reactor safety. Nuclear Engineering Department, Texas A&M University, 200810.2172/938628Search in Google Scholar
13 Solmos, M.: An experimental investigation of the countercurrent flow limitation. Texas A&M University, 2008Search in Google Scholar
14 Idelchik, I. E.: Handbook of Hydraulic Resistance. 3rd Edition, Research Institute for Gas Purification Moscow, CRC Press, 1994Search in Google Scholar
15 Gupta, S.; Poss, G.; Sonnenkalb, M.: OECD/NEA THAI program for containment safety research: main insights and perspectives, EUROSAFE, 2016Search in Google Scholar
16 Auban, O. et al.: PANDA Test Facility Description and Geometrical Data. Paul Scherrer Institut, 2005Search in Google Scholar
17 Paladino, D.; Dreier, J.: PANDA: A multipurpose integral test facility for LWR safety investigations. Science and Technology of Nuclear Installations, 2012.PMid:22743523; 10.1155/2012/239319Search in Google Scholar
18 OECD/SETH-2 Project PANDA and MISTRA Experiments Final Summary Report. Nuclear Safety, NEA/CSNI/R(2012)5, 2012Search in Google Scholar
19 Freitag, M., et al.: Specification Report for Double blind Simulations of THAI Test TH-27 “Initial Operation Test of THAI+: Part 1 Natural convection with steam injection and condensation”. Specification Report 150 1455-TH-27-AB/SR, Becker Technologies GmbH, 2015Search in Google Scholar
20 Freitag, M.; Kljenak, I.; Jankowski, T.; Risken, T.; Kostka, P.; Götz, L.; Klauck, M.; Schwarz, S.; Bleyer, A.; Bentaib, A.; Povilaitis, M.; Siccama, A.; Royl, P.; Mansour, A.; Janda, T.: Benchmark exercise TH27 on natural convection with steam injection and condensation inside the extended THAI facility. ERMSAR, 201710.1016/j.anucene.2018.02.027Search in Google Scholar
21 Zboray, R.; Paladino, D.; Auban, O.; Strassberger, H. J.; Candreia, P.; Fehlmann, M.: OECD/SETH PANDA Test 4-1 Quick-Look Report. Paul Scherrer Institut, 2006Search in Google Scholar
22 Schramm, B.; Stewering, J.; Sonnenkalb, M.: Validation of a simple condensation model for simulation of Gas distributions in containments with CFX, Computational Fluid Dynamics (CFD) for Nuclear Reactor Safety Applications. Workshop Proceedings, CFD4NRS-3, 2010Search in Google Scholar
© 2019, Carl Hanser Verlag, München